Ciclos, causalidad y cointegración en Ecuador: Interacciones entre crédito, depósitos y PIB nominal (2006-2024)
Abstract
Este artículo examina la dinámica cíclica y de largo plazo del crédito total al sector privado, depósito total del público y el producto interno bruto nominal interanual en Ecuador entre 2006 y 2024. La metodología cuantitativa, que incluye el filtro de Hodrick-Prescott y las pruebas de causalidad de Granger y cointegración, muestra que las variables están fuertemente integradas. Los resultados indican que el PIBNI actúa como la variable principal que guía la dinámica del crédito y los depósitos, y que el ciclo económico ecuatoriano se caracteriza por una marcada asimetría: las recesiones son más profundas que las expansiones. Estos hallazgos resaltan la necesidad de políticas contracíclicas y de una mayor diversificación productiva para mitigar la vulnerabilidad de la economía ecuatoriana.
References
Anzules-Falcones, W., & Novillo-Villegas, S. (2023). Innovation capacity, entrepreneurial orientation, and flexibility: An analysis from industrial SMEs in Ecuador. Sustainability, 15(13), 10321. https://doi.org/10.3390/su151310321
Bacuilima, E., Morocho, J., Aguirre, J., Coronel-Pangol, K., & Mora, P. (2023).2 Financing Ecuadorian social enterprises: What is the role of impact investment? Sustainability, 15(14), 11210. https://doi.org/10.3390/su151411210
Bartoletto, S., Chiarini, B., Marzano, E., & Piselli, P. (2019). Business cycles, credit cycles, and asymmetric effects of credit fluctuations: Evidence from Italy for the period of 1861-2013. Journal of Macroeconomics, 61, 103130. https://doi.org/10.1016/j.jmacro.2019.103130
Bationo, F. d’A. B., Murinde, V., & Soumaré, I. (2025). Cross-border banking and the transmission of global shocks to credit cycles in developing economies: A commodity price cycles channel. International Review of Financial Analysis, 106, 104515.4 https://doi.org/10.1016/j.irfa.2025.104515
Brigida, M., & Maceyka, K. (2025). Hedging deposit run risk prior to the 2023 regional banking crisis [Preimpresión]. arXiv.
Bürgi, C., & Jiang, B. (2023). Monetary policy, funding cost and banks’ risk-taking: evidence from the USA. Empirical Economics, 65(3), 1129–1148. https://doi.org/10.1007/s00181-023-02384-z
Calvo, G. A., & Reinhart, C. M. (2002). Fear of floating. The Quarterly Journal of Economics, 117(2), 379–408. https://academic.oup.com/qje/article-abstract/117/2/379/1883887
Cedillo-Chalaco, L., Sayonara Solorzano, S., Romero-Solano, R., & Calero-Córdova, R. (2025). Interacciones dinámicas entre tranporte y crecimiento económico en Ecuador: un análisis con modelos VAR y causalidad de Granger. Pacha. Revista de Estudios Contemporáneos del Sur Global, 6(19), e250469. https://doi.org/10.46652/pacha.v6i19.469
Delgado D. D., & Chávez G., G. (2018). Las Pymes en el Ecuador y sus Fuentes de Financiamiento. Revista Observatorio de la Economía Latinoamericana, (18). https://www.eumed.net/rev/oel/2018/04/pymes-ecuador-financiamiento.html
Distaso, W., Roccazzella, F., & Vrins, F. (2025). Business cycle and realized losses in the consumer credit industry. European Journal of Operational Research, 323(3), 1024–1039. https://doi.org/10.1016/j.ejor.2024.06.012
Engle, R. F., & Granger, C. W. J. (1987).5 Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236
Feijó, N., Ceular, N., & Navajas, V. (2023). Behavioral Patterns That Influence the Financing Choice Models of Small Enterprises in Ecuador through Latent Class Analysis. Sustainability, 15(8), 6790. https://doi.org/10.3390/su15086790
Gertler, M., & Karadi, P. (2013). A framework for analyzing large-scale asset purchases as a monetary policy tool. International Journal of Central Banking, 9(S1), 5–53. https://www.ijcb.org/journal/v9supplement-1/qe-1-vs-2-vs-3-framework-analyzing-large-scale-asset-purchases-monetary
Gourio, F., Kashyap, A. K., & Sim, J. (2018). The trade-offs in leaning against the wind. IMF Economic Review, 66(1), 70–115. https://www.imf.org/external/np/res/seminars/2016/arc/pdf/Kashyap_et_al_Session1.pdf
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438. https://doi.org/10.2307/1912791
Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit, and Banking, 29(1), 1–16. https://doi.org/10.2307/2953682
Jajuga, K. (2016). From duration analysis to GARCH models – An approach to systematization of quantitative methods in risk measurement. Economics and Business Review, 2(16), 33–46. https://journals.ue.poznan.pl/ebr/article/view/255
Jarque, C. M., & Bera, A. K. (1980).6 Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254. https://doi.org/10.1016/0165-1889(88)90041-3
Jordà, Ò., Schularick, M., & Taylor, A. M. (2013). When credit bites back. Journal of Money, Credit, and Banking, 45(s2), 3–28. https://doi.org/10.1111/jmcb.12069
Jordà, Ò., Schularick, M., & Taylor, A. M. (2015). Leveraged bubbles. Journal of Monetary Economics, 76, S1–S20. https://doi.org/10.1016/j.jmoneco.2015.08.005
Kydland, F. E., & Prescott, E. C. (1982).7 Time to build and aggregate fluctuations. Econometrica, 50(6), 1345–1370. http://individual.utoronto.ca/zheli/C7.pdf
Li, Y., & Du, J. (2022). The cascade effect of associated credit risk contagion among enterprises under the economic cycles. Procedia Computer Science, 199, 1054–1061. https://doi.org/10.1016/j.procs.2022.11.258
Ponce, J., & Rodríguez, M. (2019). Ciclos económicos y vulnerabilidad externa en Ecuador: Un análisis estructural. Revista de Estudios Económicos Latinoamericanos, 12(1), 89–110. https://www.cemla.org/PDF/otros/2018-05-ciclos-economicos.pdf
Proaño-Rivera, B., & Feria-Dominguez, J. M. (2023). Are Ecuadorian banks enough technically efficient for growth? A clinical study. International Journal of Finance & Economics. https://doi.org/10.1002/ijfe.2775
Richter, B., Schularick, M., & Shim, I. (2019). The costs of macroprudential policy. Journal of International Economics, 118, 263–282. https://doi.org/10.1016/j.jinteco.2018.11.002
Rouwenhorst, K. G. (1991). Time to build and aggregate fluctuations: A reconsideration. Journal of Monetary Economics, 27(2), 241–254. https://www.sciencedirect.com/science/article/pii/030439329190043N
Scheubel, B., Stracca, L., & Tille, C. (2025). The global financial cycle and capital flows: Taking stock. Journal of Economic Surveys, 39(3), 779–805. https://doi.org/10.1111/joes.12621
Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. The American Economic Review, 71(3), 393–410. http://www.jstor.org/stable/1802787
Supertintendencia de Bancos del Ecuador. (2025). Estadísticas [Conjunto de datos]. https://www.superbancos.gob.ec/estadisticas/portalestudios/
Urdaneta, A. (2024). Política Fiscal y el Papel del Estado en la Economía: Evolución, Desafíos y Apoyo a las Pyme. Digráfica. https://digrafica.net/catalogo/
Wooldridge, J. M. (2020). Introductory econometrics: A modern approach (7th ed.). Cengage Learning.
Xue, W., & Zhang, L. (2019). Revisiting the asymmetric effects of bank credit on the business cycle: A panel quantile regression approach. The Journal of Economic Asymmetries, 20(e00122), e00122. https://doi.org/10.1016/j.jeca.2019.e00122

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





.png)

























