Integrating digital skills into English language teaching: Implications for teacher performance
Abstract
Research underscores the importance of enhancing teachers’ digital competencies to effectively address contemporary educational challenges and improve educational quality. Therefore, this study aimed to examine the impact of digital skills on the teaching performance of English teachers at a private university in Lima, Peru. Adopting a quantitative approach with a non-experimental and correlational design, the study conducted surveys with 85 teachers. The results indicate a significant relationship between digital skills and overall teaching performance, explaining 71.4% of the variability. However, the study did not find a significant impact of digital skills on specific dimensions of teaching performance, such as disciplinary proficiency, didactic aspects, didactic thinking, motivation, and self-efficacy. This suggests that other factors, such as academic background and professional experience, may have a greater influence in these areas. Finally, the study highlighted the need for universities to prioritize the development of digital skills among educators, while recognizing the continued importance of traditional academic and professional factors in teaching effectiveness.
Downloads
References
arXiv:2205.01138. https://doi.org/10.1007/s00034-023-02454-8
Alarcón-Rodríguez, N. C., Castro-Pinzón, G. H., y Nauzan-Ceballos, V. H. (2024). Impacto de la tasa representativa del mercado en el IPC en Colombia. Reflexiones Contables, 7(2), 36-52. https://doi.org/10.22463/26655543.4669
Ayitey, M., Appiahene, P., Appiah, O., y Ninfaakang, C. N. (2023). Forex market forecasting using machine learning: Systematic literature review and meta-analysis. Journal of Big Data, 10, 9. https://doi.org/10.1186/s40537-022-00676-2
Bahdanau, D., Cho, K., y Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. Proceedings of the International Conference on Learning Representations, arXiv:1409.0473. https://doi.org/10.48550/arXiv.1409.0473
Blagov, B. (2019). Exchange rate uncertainty and import prices in the euro area. Review of International Economics, 27(5), 1537-1572. https://doi.org/10.1111/ROIE.12434
Dhasmana, A. (2013). Real effective exchange rate and manufacturing sector performance: Evidence from Indian firms. IIM Bangalore Research Paper No. 412. https://doi.org/10.2139/SSRN.2284077
Giramkar, N. S. (2020). Multivariable Regression Analysis for prediction of factors affecting car mileage. Journal of Emerging Technologies and Innovative Research, 7(9), 1258-1263. https://www.jetir.org/view?paper=JETIR2009171
Lira, M. V., y Senhorinho, E. W. (2022). Aplicação do modelo ARIMA para previsão de vendas da rede de farmácias Rossmann. In T. Nepomuceno, R. Lima y N. Rodrigues (Eds.), Avanços na Análise de Séries Temporais Livro de Aplicações (Vol. 1, pp. 144-162). Editora Educacionista. https://doi.org/10.31235/osf.io/v4wce
Maknickiene, N., Stankeviciene, J., y Maknickas, A. (2020). Comparison of forex market forecasting tools based on evolino ensemble and technical analysis indicators. Romanian Journal of Economic Forecasting, XXIII(3), 134-148. https://ipe.ro/new/rjef/rjef3_20/rjef3_2020p134-148.pdf
Meneses, M., Toro, J. S., y Riascos, J. C. (2017). El comportamiento del precio del petróleo y la volatilidad en la tasa de cambio: Análisis de impacto de las variaciones del WTI y de la tasa de interés referencia sobre la tasa de cambio nominal en Colombia, periodo 2013-2015. Tendencias, 18(1), 13-40. https://doi.org/10.22267/rtend.171801.62
Mignon, V. (2024). Principles of Econometrics: Theory and applications. Springer International Publishing. https://doi.org/10.1007/978-3-031-52535-3
Molina, R., y Peña, D. M. (2021). Forecasting the future trend of the EUR/USD exchange rate, using advanced technical analysis tools. Centro Sur, 6(2), 74-97. https://doi.org/10.37955/cs.v6i2.241
Richardson, A. M., Joshy, G., y D’Este, C. A. (2018). Understanding statistical principles in linear and logistic regression. The Medical Journal of Australia, 208(8), 332-334. https://doi.org/10.5694/MJA17.00222
Sharma, A. (2023). Exchange rate shocks, multinational firms and access to finance. Review of International Economics, 32(3), 907-933. https://doi.org/10.1111/roie.12708
Sprockel, J. J., Ramírez, A., y Jiménez-Canizales, C. E. (2023). Editorial. Inteligencia artificial y aprendizaje automatizado, ¿oportunidad o amenaza? Revista Colombiana de Endocrinología, Diabetes & Metabolismo, 10(2), 2-5. https://doi.org/10.53853/encr.10.2.797
Superintendencia Financiera de Colombia – SFC (2015). Circular Reglamentaria Externa DODM-146. 18 de diciembre de 2015. https://www.banrep.gov.co/sites/default/files/reglamentacion/archivos/Boletin_64_18_dic_2015_%20DODM_146.pdf
Yu, L., Wang, S., y Lai, K. K. (2005). A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Computers & Operations Research, 32(10), 2523-2541. https://doi.org/10.1016/j.cor.2004.06.024

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



1.jpg)

1.jpg)




















