Efectos del almacenamiento refrigerado en la frescura del pescado utilizando visión por computadora y modelado bajo red neuronal artificial
Resumen
Este estudio examina el efecto del almacenamiento refrigerado en la frescura y vida útil de la lubina europea (Dicentrarchus ladrax) mediante sistemas de visión artificial y redes neuronales artificiales (RNA). Se estableció un enfoque de evaluación no destructiva mediante el análisis de las características del color de los ojos (valores RGB, Lab* y HSI) del pescado almacenado a +4 °C durante 15 días, con muestreos cada tres días. Se observaron cambios considerables en la gama de colores a lo largo del tiempo, en particular una reducción del brillo (L*), que puede ser un indicador del deterioro progresivo de la frescura del pescado. Se entrenó un perceptrón multicapa de red neuronal optimizado con 20 neuronas en la capa oculta, con un alto coeficiente de correlación (R² = 0,98) entre los valores predichos y experimentales de vida útil. Los valores de vida útil temporalmente prudentes presentaron una alta correlación con los valores estimados (R² = 0,98). Esta técnica ofrece una técnica no destructiva rápida y fiable para la determinación de la frescura del pescado, con potencial aplicación en áreas relevantes como el control de calidad y la evaluación de la seguridad natural de productos acuícolas.
Descargas
Citas
Erdağ M, Ayvaz Z. The use of color to determine fish freshness: European seabass (Dicentrarchus labrax). J. Aquat. Food Prod. Technol. [Internet]. 2021; 30(7):847– 867. doi: https://doi.org/pwvr
Mokrani D, Oumouna M, Cuesta A. Fish farming conditions affect to European sea bass (Dicentrarchus labrax L.) quality and shelf life during storage in ice. Aquaculture. [Internet]. 2018; 490:120–124. doi: https://doi.org/gdcqwq
Wu X, Zhang Q, Wang Z, Wang Z, Yan H, Zhu L, Chang J. Nondestructive freshness prediction of large yellow croaker (Pseudosciaena crocea) using computer vision and machine learning techniques based on pupil color. J. Food Sci. [Internet]. 2024; 89(12):9392–9406. doi: https://doi.org/pwvt
Yi Z, Xie J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). LWT. [Internet]. 2022; 156:113016. doi: https://doi.org/gq2wg7
Cheng JH, Sun DW. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. [Internet]. 2015; 62(2):1060–1068. doi: https://doi.org/gq33j4
Zhang Y, Qin N, Luo Y, Shen H. Effects of different concentrations of salt and sugar on biogenic amines and quality changes of carp (Cyprinus carpio) during chilled storage. J. Sci. Food Agric. [Internet]. 2015; 95(6):1157– 1162. doi: https://doi.org/gj89h7
Chun HN, Kim B, Shin HS. Evaluation of a freshness indicator for quality of fish products during storage. Food Sci. Biotechnol. [Internet]. 2014; 23:1719–1725. doi: https://doi.org/f6nkz3
Liao Q, Wei C, Li Y, Gou L, Ouyang H. Developing a machine vision system equipped with UV light to predict fish freshness based on fish-surface color. Food Nutr. Sci. [Internet]. 2021; 12(3):239–248. doi: https://doi.org/gpbc4m
Sigurgisladottir S, Hafsteinsson H, Jonsson A, Lie Ø, Nortvedt R, Thomassen M, Torrissen O. Textural properties of raw salmon fillets as related to sampling method. J. Food Sci. [Internet]. 1999; 64(1):99–104. doi: https://doi.org/dmntwv
Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. [Internet]. 2020; 133:109157. doi: https://doi.org/mpdk
Wu L, Pu H, Sun DW. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. [Internet]. 2019; 83:259–273. doi: https://doi.org/gjvdn3
Gümüş B, Gümüş E, Balaban MO. Color of rainbow trout (Oncorhynchus mykiss) fillets by image and sensory analysis, and correlation with SalmoFan numbers. J. Food Sci. [Internet]. 2023; 88(1):430–446. doi: https://doi.org/pwv2
Korel F, Luzuriaga DA, Balaban MÖ. Objective quality assessment of raw tilapia (Oreochromis niloticus) fillets using electronic nose and machine vision. J. Food Sci. [Internet]. 2001; 66(7):1018–1024. doi: https://doi.org/cv9zq7
Cengizler C. Fish spoilage classification based on color distribution analysis of eye images. Mar. Sci. Technol. Bull. [Internet]. 2023; 12(1):63–69. doi: https://doi.org/pwv4
Yasin ET, Ozkan IA, Koklu M. Detection of fish freshness using artificial intelligence methods. Eur. Food Res. Technol. [Internet]. 2023; 249(8):1979–1990. doi: https://doi.org/pwv5
Huang X, Xu H, Wu L, Dai H, Yao L, Han F. A data fusion detection method for fish freshness based on computer vision and near-infrared spectroscopy. Anal. Methods. [Internet]. 2016; 8(14):2929–2935. doi: https://doi.org/gjvdpb
Gümüş B, Balaban MO. Prediction of the weight of aquacultured rainbow trout (Oncorhynchus mykiss) by image analysis. J. Aquat. Food Prod. Technol. [Internet]. 2010; 19(3–4):227–237. doi: https://doi.org/cgs3pv
Misimi E, Erikson U, Digre H, Skavhaug A, Mathiassen JR. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress. J. Food Sci. [Internet]. 2008; 73(2):E57–E68. doi: https://doi.org/b48bbd
Huang Y, Kangas LJ, Rasco BA. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr. [Internet]. 2007; 47(2):113–126. doi: https://doi.org/bffx3k
Gonzalez-Fernandez I, Iglesias-Otero MA, Esteki M, Moldes OA, Mejuto JC, Simal-Gandara J. A critical review on the use of artificial neural networks in olive oil production, characterization and authentication. Crit. Rev. Food Sci. Nutr. [Internet]. 2019; 59(12):1913–1926. doi: https://doi.org/ggb42s
Lakehal S, Lakehal B, Chadi H, Bennoune O, Ayachi A. Effects on beef microstructure using fractal dimension and ANN modelling. J. Hellenic. Vet. Med. Soc. [Internet]. 2024; 75(4):8281–8290. doi: https://doi.org/pwv6
Lalabadi HM, Sadeghi M, Mireei SA. Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquacult. Eng. [Internet]. 2020; 90:102076. doi: https://doi.org/kgdk
Zheng Y, Zhang Q, Wang X, Guo Q. Classifying the freshness of large yellow croaker (Larimichthys crocea) at 12-and 24-hour intervals using computer vision technique and convolutional neural network. Smart Agric. Technol. [Internet]. 2025; 10:100767. doi: https://doi.org/pwv7
Lakehal S, Lakehal B. Storage time prediction of frozen meat using artificial neural network modeling with color values. Rev. Cient. FCVLUZ. [Internet]. 2023; 33(2):1–6. doi: https://doi.org/pwv8
Lakehal B, Dibi Z, Lakhdar N, Dendouga A. Electrical equivalent model of intermediate band solar cell using PSpice. Sadhana. [Internet]. 2015; 40:1473–1479. doi: https://doi.org/kgdn
Dowlati M, Mohtasebi SS, Omid M, Razavi SH, Jamzad M, De La Guardia M. Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. J. Food Eng. [Internet]. 2013; 119(2):277–287. doi: https://doi.org/pwv9
Masniyom P. Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. [Internet]. 2011 [cited Feb 25 2025]; 33(2):181–192. Available in: https://goo.su/XjfL
Stoknes IS, Økland HM, Falch E, Synnes M. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. [Internet]. 2004; 138(2):183–191. doi: https://doi.org/bcb45h
Jia Z, Li M, Shi C, Zhang J, Yang X. Determination of salmon freshness by computer vision based on eye color. Food Packag. Shelf Life. [Internet]. 2022; 34:100984. doi: https://doi.org/pwwb
Chmiel M, Słowiński M, Dasiewicz K, Florowski T. Use of computer vision system (CVS) for detection of PSE pork meat obtained from m. semimembranosus. LWT Food Sci. Technol. [Internet]. 2016; 65:532–536. doi: https://doi.org/pwwc
Shi C, Qian J, Han S, Fan B, Yang X, Wu X. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C. Food Chem. [Internet]. 2018; 243:134–140. doi: https://doi.org/gjvdpk
Zhou B, Elazab A, Bort J, Vergara O, Serret MD, Araus JL. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. [Internet]. 2015; 116:20–29. doi: https://doi.org/f7pgr6
Cheng HD, Jiang XH, Sun Y, Wang J. Color image segmentation: Advances and prospects. Pattern Recognit. [Internet]. 2001; 34(12):2259–2281. doi: https://doi.org/dgw93m
Dhandra BV, Hegadi R, Hangarge M, Malemath VS. Analysis of abnormality in endoscopic images using combined HSI color space and watershed segmentation. In: 18th International Conference on Pattern Recognition (ICPR’06). Vol. 4. China: IEEE; 2006. p. 695–698. doi: https://doi.org/cxkh5f
Aggabou LK, Lakehal B, Mouda M. An Artificial Neural Network Approach for Construction Project Risk Management. Int. J. Saf. Secur. Eng. [Internet]. 2024; 14(2):553–561. doi: https://doi.org/pwwd
Liu X, Jiang Y, Shen S, Luo Y, Gao L. Comparison of Arrhenius model and artificial neuronal network for the quality prediction of rainbow trout (Oncorhynchus mykiss) fillets during storage at different temperatures. LWT Food Sci. Technol. [Internet]. 2015; 60(1):142–147. doi: https://doi.org/gsrqzm
Rezende-de-Souza JH, de Moraes-Neto VF, Cassol GZ, dos Santos Camelo MC, Savay-da-Silva LK. Use of colorimetric data and artificial neural networks for the determination of freshness in fish. Food Chem. Adv. [Internet]. 2022; 1:100129. doi: https://doi.org/pwwf