Evaluación histopatológica de los efectos de una dieta alta en fructosa sobre la curación ósea en defectos tibiales: un estudio experimental
Resumen
El objetivo de este estudio fue investigar el efecto de la alimentación con dieta alta en fructosa sobre la regeneración ósea en defectos creados en tibias de ratas. El experimento se realizó con 24 ratas Sprague-Dawley hembras en el mismo período de celo; las ratas se dividieron en dos grupos: grupo control y grupo experimental. En el grupo control con defecto (n=12), se creó quirúrgicamente un defecto cilíndrico de 4 mm de diámetro y 4 mm de profundidad en el hueso corticoesponjoso de la parte metafisaria de la tibia derecha de cada rata. No se realizó ninguna otra aplicación en este grupo durante el experimento. Para cada rata del grupo con defecto alimentado con alta fructosa (n=12), se crearon quirúrgicamente defectos cilíndricos de 4 mm de diámetro y 4 mm de profundidad en el hueso corticoesponjoso de la parte metafisaria de la tibia derecha. Los suplementos de fructosa de los grupos se agregaron al agua potable a una tasa del 20% (p/v). Todas las ratas fueron sacrificadas al final de la semana 12 de la aplicación quirúrgica. Las muestras histológicas fueron evaluadas bajo un microscopio óptico. No hubo diferencias significativas en el caso de la regeneración ósea entre los grupos control y dieta alta en fructosa 52,2 ± 9 % para animales en la dieta control, versus 49,8 ± 7,67 % para HFD. (P>0,05). Se requieren más investigaciones para identificar los mecanismos responsables de estas alteraciones en la estructura ósea y determinar si los cambios afectan en última instancia la calidad y la resistencia ósea con la edad.
Descargas
Citas
Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Rev. Nephrol. [Internet]. 2005; 1(2):80-86. doi: https://doi.org/cdhkws
Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J. Endocrinol. [Internet]. 2023; 257(2):e220270. doi: https://doi.org/pmpq
Geidl-Flueck B, Hochuli M, Németh Á, Eberl A, Derron N, Köfeler HC, Tappy L, Berneis K, Spinas GA, Gerber PA. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. [Internet]. 2021; 75(1):46-54. doi: https://doi.org/gr2jrd
Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM. Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am. J. Clin. Nutr. [Internet]. 1995; 61(4):787-791. doi: https://doi.org/pmpr
Abraha A, Humphreys SM, Clark ML, Matthews DR, Frayn KN. Acute effect of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. Br. J. Nutr. [Internet]. 1998; 80(2):169-175. doi: https://doi.org/pmps
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BioRxiv [Preprint]. [Internet]. 2024[ Nov 26, 2024]; 625441. doi: https://doi.org/pmpt
Nkosi A, Pather R, Mshengu B, Khathi A, Ngubane P. Establishing a Female Animal Model of Prediabetes Using a High-Carbohydrate, High-Fat Diet. Curr. Issues. Mol. Biol. [Internet]. 2024; 46(11):12397-12416. doi: https://doi.org/pmpv
Hara H, Takayanagi K, Shimizu T, Iwashita T, Ikari A, Maeshima A, Hasegawa H. Possible involvement of up- regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension. Hypertens. Res. [Internet]. 2025; 48:1068–1079. doi: https://doi.org/pmpw
Gunawan S, Soetikno V, Purwaningsih EH, Ferdinal F, Wuyung PE, Ramadhani D. 6-Gingerol, a Bioactive Compound of Zingiber officinale, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats. J. Exp. Pharmacol. [Internet]. 2024; 16:455-466. doi: https://doi.org/pmpx
Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus. [Internet]. 2024; 16(9):e70095. doi: https://doi.org/pmpz
Tero-Vescan A, Ștefănescu R, Istrate TI, Pușcaș A. Fructose-induced hyperuricaemia - protection factor or oxidative stress promoter?. Nat. Prod. Res. [Internet]. 2025; 39(4):948-960. doi: https://doi.org/pmp2
King S, Baptiston Tanaka C, Ross D, Kruzic JJ, Levinger I, Klineberg I, Brennan-Speranza TC. A diet high in fat and fructose adversely affects osseointegration of titanium implants in rats. Clin. Exp. Dent. Res. [Internet]. 2020; 6(1):107-116. doi: https://doi.org/pmp3
Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J. Bone Miner. Metab. [Internet]. 2022; 40(1):56-65. doi: https://doi.org/pmp4
Stricker S, Rudloff S, Geier A, Steveling A, Roeb E, Zimmer KP. Fructose Consumption-Free Sugars and Their Health Effects. Dtsch Arztebl Int. [Internet]. 2021; 118(5):71-78. doi: https://doi.org/pmp5
Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. [Internet]. 2016; 53(1):52-67. doi: https://doi.org/gh6ts4
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9
Bhat SF, Pinney SE, Kennedy KM, McCourt CR, Mundy MA, Surette MG, Sloboda DM, Simmons RA. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner. J. Physiol. [Internet]. 2021; 599(5):1487-1511. doi: https://doi.org/grr8tr
Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J. Bone Miner. Res. [Internet]. 2018; 33(6):1154-1165. doi: https://doi.org/ghbxdr
Lac G, Cavalie H, Ebal E, Michaux O. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. [Internet]. 2008; 7:16. doi: https://doi.org/bs7z27
Li W, Xu P, Wang C, Ha X, Gu Y, Wang Y, Zhang J, Xie J. The effects of fat-induced obesity on bone metabolism in rats. Obes. Res. Clin. Pract. [Internet]. 2017; 11(4):454-463. doi: https://doi.org/pmp6
Macri EV, Gonzales Chaves MM, Rodriguez PN, Mandalunis P, Zeni S, Lifshitz F, Friedman SM. High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. [Internet]. 2012; 51(4):399-406. doi: https://doi.org/cpjnxz
Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone. [Internet]. 2016; 85:99-106. doi: https://doi.org/pmp7
Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism. [Internet]. 2014; 63(2):296-305. doi: https://doi.org/f5qvgz
Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One. [Internet]. 2018; 13(2):e0192416. doi: https://doi.org/gczjmj
Coelho PG, Pippenger B, Tovar N, Koopmans SJ, Plana NM, Graves DT, Engebretson S, van Beusekom HMM, Oliveira PGFP, Dard M. Effect of Obesity or Metabolic Syndrome and Diabetes on Osseointegration of Dental Implants in a Miniature Swine Model: A Pilot Study. J. Oral Maxillofac. Surg. [Internet]. 2018; 76(8):1677-1687. doi: https://doi.org/gdx3vx
Keuroghlian A, Barroso AD, Kirikian G, Bezouglaia O, Tintut Y, Tetradis S, Moy P, Pirih F, Aghaloo T. The effects of hyperlipidemia on implant osseointegration in the mouse femur. J. Oral Implantol. [Internet]. 2015; 41(2):e7-e11. doi: https://doi.org/f682dm
Durmaz B, Gunes N, Koparal M, Gul M, Dundar S, Bingul MB. Investigation of the effects of quercetin and xenograft on the healing of bone defects: An experimental study. J. Oral Biol. Craniofac. Res. [Internet]. 2023; 13(1):22-27. doi: https://doi.org/pmp9
Istek O, Tanrisever M, Eroksuz H, Karabulut B, Ozcan EC, Bingul MB, Guler R, Dundar S: The histopathological evaluation of effects of application of the bovine amniotic fluid with graft on peri-ımplant bone regeneration. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2023; 29(5):551-556. doi: https://doi.org/m854
Tladi R, Erlwanger KH, Donaldson J. Effect of quercetin administration during the first two weeks post-weaning on the development of non-alcoholic fatty liver disease and dyslipidaemia in Sprague Dawley rats fed a high fructose diet. Gen. Physiol. Biophys. [Internet]. 2024; 43(1):25-36. doi: https://doi.org/pmqb
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9
Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long- term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. [Internet]. 1995; 16(1):25-31. doi: https://doi.org/ddh5zv
Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High- fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br. J. Nutr. [Internet]. 2010; 103(9):1302-1308. doi: https://doi.org/drzrvx
Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am. J. Physiol. Endocrinol. Metab. [Internet]. 2013; 304(12):E1303- 1313. doi: https://doi.org/f5ndqn
Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague- Dawley rats on bone mass and strength. Bone. [Internet]. 2008; 42(5):960-968. doi: https://doi.org/cqrf6g
Tjäderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J. Nutr. [Internet]. 1998; 128(10):1807-1810. doi: https://doi.org/gf5c86
Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Peñacarrillo ML. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif. Tissue Int. [Internet]. 2009; 84(6):453-461. doi: https://doi.org/fk3jp6
Bergstra AE, Lemmens AG, Beynen AC. Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J. Nutr. [Internet]. 1993; 123(7):1320-1327. doi: https://doi.org/gf5dk4
Koh ET, Reiser S, Fields M. Dietary fructose as compared to glucose and starch increases the calcium content of kidney of magnesium-deficient rats. J Nutr. [Internet]. 1989; 119(8):1173-1178. doi: https://doi.org/pmqc
Bass EF, Baile CA, Lewis RD, Giraudo SQ. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr. Res. [Internet]. 2013; 33(12):1063-1071. doi: https://doi.org/f5kj5x
Khan J, Sadie-Van Gijsen H, Kotzé-Hörstmann LM, Kotze SH, Layman-Lemphane JI. Characterisation of the influence of dietary fat and sugar on bone health utilising densitometry, micro-computed tomography and histomorphometry. Bone. 2025; 192:117380. doi: https://doi.org/pmqd