Histopathological evaluation of effects of high fructose diet on bone healing in tibial defects: An Experimental study

Keywords: Fructose, high fructose diet, bone healing, bone metabolism, bone formation

Abstract

The purpose of this study was to examine the impact of a high- fructose diet on bone regeneration in defects created in rat tibias. The experimental setup was performed with 24 female Sprague-Dawley rats in the same estrus period; the rats were divided into two groups as control and experimental groups. In the control defect group (n=12), a cylindrical defect of 4 mm in diameter and 4 mm in depth was surgically created in the corticocancellous bone of the metaphyseal part of the right tibia of each rat. No other application was made in this group during the experimental setup. For each rat in the high- fructose-fed defect group (n=12), cylindrical defects of 4 mm in diameter and 4 mm in depth were surgically created in the corticocancellous bone of the metaphyseal part of the right tibia. Fructose supplements of the groups were added to the drinking water at a rate of 20% (w/v). All rats were sacrificed at the end of the 12th week of the surgical application. The histological samples were evaluated under a light microscope. There was no significant differences in the bone regeneration between control animals and high fructose diet consumption group.52.2 ± 9 % for Controls, versus 49.8 ± 7.67 % for HFD (P>0,05). Further research is needed to determine the mechanisms responsible for these changes in bone structure and how these changes affect bone quality and strength with age.

Downloads

Download data is not yet available.

References

Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Rev. Nephrol. [Internet]. 2005; 1(2):80-86. doi: https://doi.org/cdhkws

Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J. Endocrinol. [Internet]. 2023; 257(2):e220270. doi: https://doi.org/pmpq

Geidl-Flueck B, Hochuli M, Németh Á, Eberl A, Derron N, Köfeler HC, Tappy L, Berneis K, Spinas GA, Gerber PA. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. [Internet]. 2021; 75(1):46-54. doi: https://doi.org/gr2jrd

Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM. Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am. J. Clin. Nutr. [Internet]. 1995; 61(4):787-791. doi: https://doi.org/pmpr

Abraha A, Humphreys SM, Clark ML, Matthews DR, Frayn KN. Acute effect of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. Br. J. Nutr. [Internet]. 1998; 80(2):169-175. doi: https://doi.org/pmps

Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BioRxiv [Preprint]. [Internet]. 2024[ Nov 26, 2024]; 625441. doi: https://doi.org/pmpt

Nkosi A, Pather R, Mshengu B, Khathi A, Ngubane P. Establishing a Female Animal Model of Prediabetes Using a High-Carbohydrate, High-Fat Diet. Curr. Issues. Mol. Biol. [Internet]. 2024; 46(11):12397-12416. doi: https://doi.org/pmpv

Hara H, Takayanagi K, Shimizu T, Iwashita T, Ikari A, Maeshima A, Hasegawa H. Possible involvement of up- regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension. Hypertens. Res. [Internet]. 2025; 48:1068–1079. doi: https://doi.org/pmpw

Gunawan S, Soetikno V, Purwaningsih EH, Ferdinal F, Wuyung PE, Ramadhani D. 6-Gingerol, a Bioactive Compound of Zingiber officinale, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats. J. Exp. Pharmacol. [Internet]. 2024; 16:455-466. doi: https://doi.org/pmpx

Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus. [Internet]. 2024; 16(9):e70095. doi: https://doi.org/pmpz

Tero-Vescan A, Ștefănescu R, Istrate TI, Pușcaș A. Fructose-induced hyperuricaemia - protection factor or oxidative stress promoter?. Nat. Prod. Res. [Internet]. 2025; 39(4):948-960. doi: https://doi.org/pmp2

King S, Baptiston Tanaka C, Ross D, Kruzic JJ, Levinger I, Klineberg I, Brennan-Speranza TC. A diet high in fat and fructose adversely affects osseointegration of titanium implants in rats. Clin. Exp. Dent. Res. [Internet]. 2020; 6(1):107-116. doi: https://doi.org/pmp3

Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J. Bone Miner. Metab. [Internet]. 2022; 40(1):56-65. doi: https://doi.org/pmp4

Stricker S, Rudloff S, Geier A, Steveling A, Roeb E, Zimmer KP. Fructose Consumption-Free Sugars and Their Health Effects. Dtsch Arztebl Int. [Internet]. 2021; 118(5):71-78. doi: https://doi.org/pmp5

Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. [Internet]. 2016; 53(1):52-67. doi: https://doi.org/gh6ts4

Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9

Bhat SF, Pinney SE, Kennedy KM, McCourt CR, Mundy MA, Surette MG, Sloboda DM, Simmons RA. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner. J. Physiol. [Internet]. 2021; 599(5):1487-1511. doi: https://doi.org/grr8tr

Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J. Bone Miner. Res. [Internet]. 2018; 33(6):1154-1165. doi: https://doi.org/ghbxdr

Lac G, Cavalie H, Ebal E, Michaux O. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. [Internet]. 2008; 7:16. doi: https://doi.org/bs7z27

Li W, Xu P, Wang C, Ha X, Gu Y, Wang Y, Zhang J, Xie J. The effects of fat-induced obesity on bone metabolism in rats. Obes. Res. Clin. Pract. [Internet]. 2017; 11(4):454-463. doi: https://doi.org/pmp6

Macri EV, Gonzales Chaves MM, Rodriguez PN, Mandalunis P, Zeni S, Lifshitz F, Friedman SM. High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. [Internet]. 2012; 51(4):399-406. doi: https://doi.org/cpjnxz

Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone. [Internet]. 2016; 85:99-106. doi: https://doi.org/pmp7

Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism. [Internet]. 2014; 63(2):296-305. doi: https://doi.org/f5qvgz

Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One. [Internet]. 2018; 13(2):e0192416. doi: https://doi.org/gczjmj

Coelho PG, Pippenger B, Tovar N, Koopmans SJ, Plana NM, Graves DT, Engebretson S, van Beusekom HMM, Oliveira PGFP, Dard M. Effect of Obesity or Metabolic Syndrome and Diabetes on Osseointegration of Dental Implants in a Miniature Swine Model: A Pilot Study. J. Oral Maxillofac. Surg. [Internet]. 2018; 76(8):1677-1687. doi: https://doi.org/gdx3vx

Keuroghlian A, Barroso AD, Kirikian G, Bezouglaia O, Tintut Y, Tetradis S, Moy P, Pirih F, Aghaloo T. The effects of hyperlipidemia on implant osseointegration in the mouse femur. J. Oral Implantol. [Internet]. 2015; 41(2):e7-e11. doi: https://doi.org/f682dm

Durmaz B, Gunes N, Koparal M, Gul M, Dundar S, Bingul MB. Investigation of the effects of quercetin and xenograft on the healing of bone defects: An experimental study. J. Oral Biol. Craniofac. Res. [Internet]. 2023; 13(1):22-27. doi: https://doi.org/pmp9

Istek O, Tanrisever M, Eroksuz H, Karabulut B, Ozcan EC, Bingul MB, Guler R, Dundar S: The histopathological evaluation of effects of application of the bovine amniotic fluid with graft on peri-ımplant bone regeneration. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2023; 29(5):551-556. doi: https://doi.org/m854

Tladi R, Erlwanger KH, Donaldson J. Effect of quercetin administration during the first two weeks post-weaning on the development of non-alcoholic fatty liver disease and dyslipidaemia in Sprague Dawley rats fed a high fructose diet. Gen. Physiol. Biophys. [Internet]. 2024; 43(1):25-36. doi: https://doi.org/pmqb

Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9

Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long- term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. [Internet]. 1995; 16(1):25-31. doi: https://doi.org/ddh5zv

Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High- fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br. J. Nutr. [Internet]. 2010; 103(9):1302-1308. doi: https://doi.org/drzrvx

Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am. J. Physiol. Endocrinol. Metab. [Internet]. 2013; 304(12):E1303- 1313. doi: https://doi.org/f5ndqn

Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague- Dawley rats on bone mass and strength. Bone. [Internet]. 2008; 42(5):960-968. doi: https://doi.org/cqrf6g

Tjäderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J. Nutr. [Internet]. 1998; 128(10):1807-1810. doi: https://doi.org/gf5c86

Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Peñacarrillo ML. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif. Tissue Int. [Internet]. 2009; 84(6):453-461. doi: https://doi.org/fk3jp6

Bergstra AE, Lemmens AG, Beynen AC. Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J. Nutr. [Internet]. 1993; 123(7):1320-1327. doi: https://doi.org/gf5dk4

Koh ET, Reiser S, Fields M. Dietary fructose as compared to glucose and starch increases the calcium content of kidney of magnesium-deficient rats. J Nutr. [Internet]. 1989; 119(8):1173-1178. doi: https://doi.org/pmqc

Bass EF, Baile CA, Lewis RD, Giraudo SQ. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr. Res. [Internet]. 2013; 33(12):1063-1071. doi: https://doi.org/f5kj5x

Khan J, Sadie-Van Gijsen H, Kotzé-Hörstmann LM, Kotze SH, Layman-Lemphane JI. Characterisation of the influence of dietary fat and sugar on bone health utilising densitometry, micro-computed tomography and histomorphometry. Bone. 2025; 192:117380. doi: https://doi.org/pmqd

Published
2025-05-20
How to Cite
1.
Kaya CA, Sagsoz A, Tanrisever M, Gelic T, Ozercan IH, Dundar S. Histopathological evaluation of effects of high fructose diet on bone healing in tibial defects: An Experimental study. Rev. Cient. FCV-LUZ [Internet]. 2025May20 [cited 2025Jul.29];35(2):6. Available from: https://produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/43858
Section
Veterinary Medicine