El ácido ursodesoxicólico alivia la toxicidad hepática y renal inducida por Xanthium strumarium en ratas al inhibir la apertura de los poros mitocondriales

Palabras clave: Xanthium strumarium L., ácido ursodesoxicólico, mPTP, Ca2 mitocondrial, inmunohistoquímica

Resumen

En la toxicidad de Xanthium strumarium, la disfunción mitocondrial resultante de la apertura de los poros mitocondriales, se identifica como el mecanismo principal responsable del daño hepático y renal. Se sabe que el ácido ursodesoxicólico bloquea la apertura de los poros mitocondriales; por lo tanto, este estudio tiene como objetivo dilucidar el efecto terapéutico dependiente del tiempo del ácido ursodesoxicólico sobre el daño mitocondrial y las lesiones hepáticas y renales asociadas en respuesta a la exposición a X. strumarium. Después del proceso de extracción, a las ratas Sprague–Dawley se les administró extracto de semilla de X. strumarium (100 g·kg-1) por sonda. El ácido ursodesoxicólico se administró por sonda oral 6 horas después de la administración del extracto, y se continuó la administración durante un período de 7 días. En conclusión, el efecto tóxico de X. strumarium fue mitigado por el ácido ursodesoxicólico, que redujo la expresión de la ATP sintasa, el daño oxidativo, la concentración mitocondrial de Ca2+ y la apertura de los poros mitocondriales. El ácido ursodesoxicólico mitigó la toxicidad histopatológica inducida por X. strumarium, lo que resultó en una reducción de los niveles de glucosa en sangre, alanina aminotransferasa, aspartato aminotransferasa, fosfatasa alcalina, lactato deshidrogenasa, nitrógeno ureico en sangre y creatina fosfoquinasa que estaban más cerca de los niveles de control. Los hallazgos obtenidos indican que el ácido ursodesoxicólico, un bloqueador de la apertura de los poros mitocondriales, puede prevenir la disfunción mitocondrial y minimizar la toxicidad de X. strumarium.

Descargas

La descarga de datos todavía no está disponible.

Citas

Kamboj A, Soluja AK. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). Int. J. Green Pharm. [Internet]. 2010; 4(3):129-139. doi: https://doi.org/b7jrzh

Das D, Tangjang S. Bio–stabilization of toxic weeds (Xanthium strumarium and Lantana camara) implementing mono – and polyculture of Eisenia fetida and Eudrilus eugeniae. Environ Sci. Pollut. Res. Int. [Internet]. 2024; 31(37):49891-49904. doi: https://doi.org/pgpk

Machado M, Queiroz CRR, Wilson TM, Sousa DER, Castro MB, Saravia A, Lee ST, Armien AG, Barros SS, Riet–Correa F. Endemic Xanthium strumarium poisoning in cattle in flooded areas of the Araguari River, Minas Gerais, Brazil. Toxicon [Internet]. 2021; 200:23-29. doi: https://doi.org/pgpm

Sosa S, Capelli A, Corro AC, Dutra F, Santos CGY. Intoxication of dairy cows in Uruguay by ingestion of cocklebur (Xanthium strumarium) seeds in sorghum silage. J. Vet. Diagn. Invest. [Internet]. 2025; 37(1):141-144. doi: https://doi.org/pgpn

García–Santos C, Capelli A. Plant and mycotoxin poisonings in ruminants diagnosed in Uruguay. Vet. (Montevideo). [Internet]. 2016 [cited 12 Dec. 2024]; 52(202):28-42. Available in: https://goo.su/uGdzF

Saidi H, Mofid M. Toxic Effect of Xanthium strumarium as an Herbal Medicine Preparation. EXCLI J. [Internet]. 2009; 8:115-117. doi: https://doi.org/pgpp

Turgut M, Alhan CC, Gürgöze M, Kurt A, Doğan Y, Tekatli M, Akpolat N, Aygün AD. Carboxyatractyloside poisoning in humans. Ann. Trop. Paediatr. [Internet]. 2005; 25(2):125-134. doi: https://doi.org/fg93nf

Gurley ES, Rahman M, Hossain MJ, Nahar N, Faiz MA, Islam N, Sultana R, Khatun S, Uddin MZ, Haider MS, Islam MS, Ahmed BN, Rahman MW, Mondal UK, Luby SP. Fatal outbreak from consuming Xanthium strumarium seedlings during time of food scarcity in northeastern Bangladesh. Plos One [Internet]. 2010; 5(3):e9756. doi: https://doi.org/fjc5bj

Alves–Figueiredo H, Silva–Platas C, Lozano O, Vázquez–Garza E, Guerrero–Beltrán CE, Zarain–Herzberg A, García–Rivas G. A systematic review of post–translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim. Biophys. Acta Mol. Basis Dis. [Internet]. 2021; 1867(1):165992. doi: https://doi.org/pgpq

Nikles S, Heuberger H, Hilsdorf E, Schmücker R, Seidenberger R, Bauer R. Influence of Processing on the Content of Toxic Carboxyatractyloside and Artactyloside and the Microbiological Status of Xanthium sibiricum Fruits (Ceng’erzi). Planta Med. [Internet]. 2015; 81(12-13):1213-1220. doi: https://doi.org/g6n8gb

Keskin–Alkaç Z, Korkak FA, Dağoğlu G, Eröksüz Y, Tanyıldızı S. Tamoxifen and sodium thiosulfate reduces hepatic and renal damage induced by Xanthium strumarium L. Through controlling mitochondrial permeability. Med. Weter. [Internet]. 2025; 81(3):119-127. doi: https://doi.org/pgpr

Kapur A, Ayuso JM, Rehman S, Kumari S, Felder M, Stenerson Z, Skala MC, Beebe D, Barroilhet L, Patankar MS. Oxidative phosphorylation inhibitors inhibit proliferation of endometriosis cells. Reproduction [Internet]. 2023; 165(6):617-628. doi: https://doi.org/pgps

Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid. Res. [Internet]. 2014; 55(8):1553- 1595. doi: https://doi.org/f6k2hg

Rajesh KG, Suzuki R, Maeda H, Yamamoto M, Yutong X, Sasaguri S. Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/ Akt dependent pathway. J. Mol. Cell. Cardiol. [Internet]. 2005; 39(5):766-776. doi: https://doi.org/ffhm82

Qi H, Shen D, Jiang C, Wang H, Chang M. Ursodeoxycholic acid protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis in MPTP/MPP+–induced Parkinson’s disease. Neurosci Lett. [Internet]. 2021; 741: 135493. doi: https://doi.org/pgpt

Laurens JB, Bekker LC, Steenkamp V, Stewart MJ. Gas chromatographic–mass spectrometric confirmation of atractyloside in a patient poisoned with Callilepis laureola. J. Chromatogr. B. Biomed. Sci. Appl. [Internet]. 2001; 765(2):127-133. doi: https://doi.org/dkfxz8

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. [Internet]. 1979; 95(2):351–358. doi: https://doi.org/bktx4x

Ellman GL. Tissue sulphydryl groups. Arch Biochem. Biophys. [Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8

Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. [Internet]. 1988; 34(3):497–500. PMID: 3349599. Available in: https://n9.cl/obr0f3

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. [Internet]. 1951; 193(1):265–275. PMID: 14907713. Available in: https://n9.cl/nrvmy

Wang LL, Yu QL, Han L, Ma XL, Song RD, Zhao SN, Zhang WH. Study on the effect of reactive oxygen spesies–mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. [Internet]. 2018; 244:394-402. doi: https://doi.org/pgpv

Wang LL, Han L, Ma XL. Yu QL, Zhao SN. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chem. [Internet]. 2017; 234:323-331. doi: https://doi.org/g7fw42

Hu ZG, Zhou L, Ding SZ. Effect of aerobic training to exhaustive exercise rat mitochondrial permeability transition pore. J. Shenyang Sport Univ. [Internet]. 2015; 34(3):64-67. Available in: https://goo.su/JVvutD

Steenkamp PA, Harding NM, Van–Heerden FR, van–Wyk BE. Determination of atractyloside in Callilepis laureola using solid–phase extraction and liquid chromatography– atmospheric pressure ionisation mass spectrometry. J. Chromatogr A. [Internet]. 2004; 1058(1-2):153-162. doi: https://doi.org/ddx7q2

Alkaç ZK, Korkak FA, Dağoğlu G, İncili CA, Hark BD, Tanyıldızı S. Puerarin mitigates oxidative injuries, opening of mitochondrial permeability transition pores and pathological damage associated with liver and kidney in Xanthium strumarium– intoxicated rats. Toxicon [Internet]. 2022; 213:13-22. doi: https://doi.org/pgpx

Koprdova R, Osacka J, Mach M, Kiss A. Acute Impact of Selected Pyridoindole Derivatives on Fos Expression in Different Structures of the Rat Brain. Cell Mol Neurobiol. [Internet]. 2018; 38(1):171-180. doi: https://doi.org/gcwvg6

Dou JP, Wu Q, Fu CH, Zhang DY, Yu J, Meng XW, Liang P. Amplified intracellular Ca 2+ for synergistic anti–tumor therapy of microwave ablation and chemotherapy. J. Nanobiotechnology [Internet]. 2019; 17:1-17. doi: https://doi.org/gp5dqc

Nolfi–Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. [Internet]. 2020; 37:101674. doi: https://doi.org/gmxqv7

Wang Y, Han T, Xue M, Han P, Zhang QY, Huang BK, Zhang H, Ming QL, Peng W, Qin LP. Hepatotoxicity of kaurene glycosides from Xanthium strumraium L. fruits in mice. Pharmazie. [Internet]. 2011; 66(6):445-449. doi: https://doi.org/pgpz

Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Xanthatin Promotes Apoptosis via Inhibiting Thioredoxin Reductase and Eliciting Oxidative Stress. Mol. Pharm. [Internet]. 2018; 15(8):3285-3296. doi: https://doi.org/gdsvwj

Atlante A, Valenti D, Latina V, Amadoro G. Dysfunction of Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. Int. J. Mol. Sci. [Internet]. 2022; 23(14):7722. doi: https://doi.org/pgp3

Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J. Gen. Physiol. [Internet]. 2020; 152(11):e201912475. doi: https://doi.org/g89s3m

Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. IF1: setting the pace of the F1F0-ATP synthase. Trends. Biochem. Sci. [Internet]. 2009; 34(7):343-350. doi: https://doi.org/cpcpn3

Grover GJ, Atwal KS, Sleph PG, Wang FL, Monshizadegan H, Monticello T, Green DW. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase; effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am. J. Physiol. Heart. Circ. Physiol. [Internet]. 2004; 287(4):H1747-H1755. doi: https://doi.org/d98427

Koc S, Aktas A, Sahin B, Ozer H, Zararsiz GE. Protective effect of ursodeoxycholic acid and resveratrol against tacrolimus induced hepatotoxicity. Biotech. Histochem. [Internet]. 2023; 98(7):471-478. doi: https://doi.org/pgp4

Simental–Mendía M, Sánchez–García A, Simental–Mendía LE. Effect of ursodeoxycholic acid on liver markers: A systematic review and meta–analysis of randomized placebo–controlled clinical trials. Br. J. Clin. Pharmacol. [Internet]. 2020; 86(8):1476-1488. doi: https://doi.org/pgp5

Rajagopala SV, Singh H, Yu Y, Zabokrtsky KB, Torralba MG, Moncera KJ, Pieper R, Sender L, Nelson KE. Persistent gut microbial dysbiosis in children with acute lymphoblastic leukemia (ALL) during chemotherapy. Microb. Ecol. [Internet]. 2020; 79:1034-1043. doi: https://doi.org/gmwp4f

Qi H, Shen D, Jiang C, Wang H, Chang M. Ursodeoxycholic acid protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis in MPTP/MPP+–induced Parkinson’s disease. Neurosci. Lett. [Internet]. 2021; 741:135493. doi: https://doi.org/pgpt

Ali FEM, Hassanein EHM, Bakr AG, El–Shoura EAM, El–Gamal DA, Mahmoud AR, Abd–Elhamid TH. Ursodeoxycholic acid abrogates gentamicin–induced hepatotoxicity in rats: Role of NF–KB–p65/TNF–a, Bax/Bcl–xl/Caspase-3, and eNOS/ iNOS pathways. Life Sci. 2020; 254:117760. doi: https://doi.org/gt5kh7

Xue LM, Zhang QY, Han P, Jiang YP, Yan RD, Wang Y, Rahman K, Jia M, Han T, Qin LP. Hepatotoxic constituents and toxicological mechanism of Xanthium strumarium L. fruits. J. Ethnopharmacol. [Internet]. 2014; 152(2):272-282. doi: https://doi.org/f5wjfd

Deng Z, He M, Hu H, Zhang W, Zhang Y, Ge Y, Ma T, Wu J, Li L, Sun M, An S, Li J, Huang Q, Gong S, Zhang J, Chen Z, Zeng Z. Melatonin attenuates sepsis–induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy [Internet]. 2024; 20(1):151-165. doi: https://doi.org/gsqgnt

Li L, Han W, Gu Y, Qiu S, Lu Q, Jin J, Luo J, Hu X. Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res. [Internet]. 2007; 67(10):4894-4903. doi: https://doi.org/c7nj9s

Xu H, Sun Y, Zhang Y, Wang W, Dan J, Yao J, Chen H, Tian F, Sun X, Guo S, Tian Z, Tian Y. Protoporphyrin IX induces a necrotic cell death in human THP-1 macrophages through activation of reactive oxygen species/c–Jun N–terminal protein kinase pathway and opening of mitochondrial permeability transition pore. Cell. Physiol. Biochem. [Internet]. 2014; 34(6):1835- 1848. doi: https://doi.org/f6vtq4

Publicado
2025-04-22
Cómo citar
1.
Keskin Alkaç Z, Korkak FA, Dağoğlu G, Eröksüz Y, Tanyıldızı S. El ácido ursodesoxicólico alivia la toxicidad hepática y renal inducida por Xanthium strumarium en ratas al inhibir la apertura de los poros mitocondriales. Rev. Cient. FCV-LUZ [Internet]. 22 de abril de 2025 [citado 29 de julio de 2025];35(2):11. Disponible en: https://produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/43810
Sección
Medicina Veterinaria