Maduración y germinación de embriones somáticos de guayabo var. Enana Roja Cubana EEA-1840

  • Jorge Vilchez-Perozo Dpto. de Botánica, Facultad de Agronomía, Universidad del Zulia, AP 15205, Maracaibo, Edo. Zulia (4005ZU), República Bolivariana de Venezuela. http://orcid.org/0000-0001-8360-2514
  • Nilca Albany Dpto. de Química, Facultad de Agronomía, Universidad del Zulia, AP 15205, Maracaibo, Edo. Zulia (4005ZU), República Bolivariana de Venezuela https://orcid.org/0000-0002-0184-7583
  • Fernando Pliego Dpto. de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, s/n 29071 Málaga, España https://orcid.org/0000-0001-8176-072X
  • Carolina Sánchez Dpto. de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, s/n 29071 Málaga, España https://orcid.org/0000-0001-6727-1022
Palabras clave: ácido abscísico, embriogénesis somática, sacarosa, Psidium guajava L.

Resumen

La embriogénesis somática es una alternativa para la propagación acelerada de materiales promisorios de guayaba (Psidium guajava L.) de interés agronómico. Sin embargo, las bajas tasas de maduración y germinación de los embriones somáticos son algunos de los aspectos que limitan su aplicación en programas de mejoramiento genético con diferentes propósitos. En este sentido, se estudió el efecto de tres concentraciones (0, 1 y 1.5 mg.L-1) de ácido abscísico (ABA) sobre la maduración embrionaria y de dos concentraciones de sacarosa (3 y 5 %) y macronutrientes Murashige y Skoog (MS) (50 y 100 %) sobre la germinación de embriones somáticos de guayaba var. Enana Roja Cubana EEA-1840. Después de seis semanas de cultivo, el ABA tuvo un efecto negativo sobre la maduración de los embriones somáticos en medios de cultivo suplementados con 1 o 1.5 mg.L-1, mientras que se observaron de 3.95 a 5.49 veces más embriones maduros en ausencia de ABA. La germinación de embriones somáticos mejoró significativamente cuando se redujo la concentración de macronutrientes en el medio de cultivo, independientemente de la concentración de sacarosa [MS 50 % + 3 % sacarosa (73,3 %) y MS 50 % + 5 % sacarosa (55,0 %)]. Se concluye que la simplificación del medio de cultivo con reducción de los macroelementos MS y sacarosa a la concentración estándar favorece la germinación de embriones maduros de guayaba var. Enana Roja Cubana EEA-1840.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alemano L., Berthouly M., & Michaux-Ferreiere N. (1997). Embryogenèses somatique du cacaoyer a partir de pièces florales. Plantations, Recherche Développement, 3(4), 225-237. https://agritrop.cirad.fr/388362/1/document_388362.pdf
Canhoto, J. M., Lopes, M. L., & Cruz, G. S. (1999). Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). In Plant Cell, Tissue and Organ Culture, 57, 13-21. https://doi.org/10.1023/A:1006273128228
Choi, Y.E., & Jeong, J.H. (2002). Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Reports, 20, 1112–1116. https://doi.org/10.1007/s00299-002-0455-y
Cipriano, J. L., Cruz, A. C. F., Mancini, K. C., Schmildt, E. R., Lopes, J. C., Otoni, W. C., & Alexandre, R. S. (2018). Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects. Anais da Academia Brasileira de Ciências, 90, 385-400. https://doi.org/10.1590/0001-3765201820160252
Corredoira, E., Ballester, A., & Vieitez, A. M. (2003). Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Annals of Botany, 92(1), 129–136. https://doi.org/10.1093/aob/mcg107
Cruz G.S., Canhoto J. M., & Abreu M. (1990). Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Science 66, 263-270. https://doi.org/10.1016/0168-9452(90)90212-7
do Nascimento, A. M. M., Polesi, L. G., Back, F. P., Steiner, N., Guerra, M. P., Castander-Olarieta, A., Moncaleán, P., & Montalbán, I. A. (2021). The Chemical Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets. Frontiers in Plant Science, 12, 771464. https://doi.org/10.3389/fpls.2021.771464
Gao, F., Peng, C., Wang, H., Shen, H., & Yang, L. (2021). Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. Journal of Forestry Research, 32(2), 483–491. https://doi.org/10.1007/s11676-020-01147-1
George, E.F., Hall, M.A., & Klerk, G.J.D. (2008). Somatic Embryogenesis. In: George, E.F., Hall, M.A. & Klerk, G.J.D. (eds). Plant Propagation by Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5005-3_9
Gómez R. (1998). Embriogénesis Somática. En: Propagación y mejora genética de plantas por biotecnología. pp13-22. Pérez J. (eds). Primera edición. Instituto de Biotecnología de las Plantas. Universidad Central de las Villas. Santa Clara. Cuba.
Gómez, R., Vilchez-Perozo, J., Albany, N., & Agramonte, D. (2005). Somatic embryo germination of Psidium guajava L. in the Rita® temporary immersion system and on semisolid medium. In: Hvoslef-Eide, A.K., Preil, W. (eds). Liquid Culture Systems for in vitro Plant Propagation. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_14
González, Jiménez, M. C., & Olivet, E. (2023). Respuesta agronómica del cultivo de la guayaba (Psidium guajava. L) a la aplicación del Quitomax®. Revista Científica Agroecosistemas, 11(1), 163-171. https://aes.ucf.edu.cu/index.php/aes/article/view/612
Gray, D.J. (1987). Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. Hortscience, 22, 810–814. https://doi.org/10.21273/HORTSCI.22.5.810
Guan, Y., Li, S. G., Fan, X. F., & Su, Z. H. (2016). Application of somatic embryogenesis in woody plants. Frontiers in Plant Science, 7, 938 https://doi.org/10.3389/fpls.2016.00938
Kaur K., Dolker D., Behera S., & Pati P.K. (2022). Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) Dunal. Plant Cell, Tissue and Organ Culture, 149, 41-60. https://doi.org/10.1007/s11240-021-02225-w
Kubeš, M., Drážná, N., Konrádová, H., & Lipavská, H. (2014). Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cellular and Developmental Biology-Plant, 50, 45-57. https://doi.org/10.1007/s11627-013-9589-6
Litz R.E. (1984a). In vitro somatic embryogenesis from callus of Jaboticaba, Myrciaria cauliflora. HortScience, 19(1), 62-64. https://doi.org/10.21273/HORTSCI.19.1.62
Litz R.E. (1984b). In vitro responses of adventitious embryos of two polyembrionic Eugenia species. HortScience, 19(5), 720-722. https://doi.org/10.21273/HORTSCI.19.5.720
Mazri, M. A., Naciri, R., & Belkoura, I. (2020). Maturation and conversion of somatic embryos derived from seeds of olive (Olea europaea L.) cv. Dahbia: occurrence of secondary embryogenesis and adventitious bud formation. Plants 2020, 9(11), 1489; https://doi.org/10.3390/plants9111489.
Murashige, T., & Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Oliveira, F. L. R., Sant’anna-Santos, B. F., Fraga, H. P., Degenhardt, J., & Quoirin, M. (2022). Embryogenic cultures and somatic embryos development from mature seeds of jabuticaba (Plinia cauliflora (Mart.) Kausel). Anais da Academia Brasileira de Ciências, 94(4): e20201073. https://doi.org/10.1590/0001-3765202220201073
Perán-Quesada, R., Sánchez-Romero, C., Barceló-Muñoz, A., & Pliego-Alfaro, F. (2004). Factors affecting maturation of avocado somatic embryos. Scientia Horticulturae, 102(1), 61–73. https://doi.org/10.1016/j.scienta.2003.12.003
Rai, M. K., Akhtar, N., & Jaiswal, V. S. (2007). Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Scientia Horticulturae, 113(2), 129–133. https://doi.org/10.1016/j.scienta.2007.02.010
Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Scientia Horticulturae, 117(3), 302–305. https://doi.org/10.1016/j.scienta.2008.04.011
Ramos, L., Juan, N., Daza, A., Acosta, J. L., Cisneros, F. G., Tamayo Aguilar, Y., Hidalgo, E. C., Trejo, S. L., & Rodríguez-Ortiz, G. (2013). Pectimorf ® dose for rooting from cuttings of guava variety Cuban Red Dwarf. Revista Mexicana de Ciencias Agrícolas, (6), 1093-1105. http://www.scielo.org.mx/pdf/remexca/v4nspe6/v4spe6a2.pdf
Rezende, J.C., Carvalho C.H.S., Pascual M., Santos A.C.R., & Carvalho SM. (2011). Calli induction in leaf explants of coffee elite genotypes. Ciência Rural, 41, 384-389. https://doi.org/10.1590/S0103-84782011000300004
Riviello-Cogco, E., Robledo-Paz, A., Gutiérrez-Espinosa, M. A., Suárez-Espinosa, J., & Mascorro-Gallardo, J. O. (2021). Maduración y germinación de embriones somáticos de Coffea arabica cv. Colombia. Revista Fitotecnia Mexicana, 44(2), 161-161. https://doi.org/10.35196/rfm.2021.2.161
Rong, Y., Junduo L., Ningbo Z., Qinhan Y., & Weirong X. (2023). Phenotypically abnormal cotyledonary Vitis vinifera embryos differ in anatomy, endogenous hormone levels and transcriptome profiles. Tree Physiology, (43),3, 467–485, https://doi.org/10.1093/treephys/tpac129
Shohael, A., Khatun S., Alam M., & Paek K. (2013). Effects of Murashige and Skoog medium strength on germination and secondary metabolites production of Eleutherococcus senticosus somatic embryos in bioreactor. International Journal of Biosciences, 3, 155-163. http://dx.doi.org/10.12692/ijb/3.3.155-163
Sokal, R. & Rohlf, F. (2013). Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company, New York.
Statistix 8. (2003). Statistix 8: Analytical Software User’s Manual. Tallahassee, Florida, U.S.A.
Stuart, D. A., & Strickland, S. G. (1984). The role of aminoacid additions to the regeneration medium. Plant Science Letters, 34, 74-81. https://doi.org/10.1016/0304-4211(84)90139-1
Vahdati, K., Bayat, S., Ebrahimzadeh, H., Jariteh, M., & Mirmasoumi, M. (2008). Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell, Tissue and Organ Culture, 93(2), 163–171. https://doi.org/10.1007/s11240-008-9355-3
Vilchez-Perozo J., Albany N., Gómez-Kosky R., & García L. (2002). Inducción de embriogénesis somática en Psidium guajava L. a partir de embriones cigóticos. Revista de la Facultad de Agronomía (LUZ), 19(4): 284-293. https://produccioncientificaluz.org/index.php/agronomia/article/view/26429/27055
Publicado
2023-09-30
Cómo citar
Vilchez-Perozo, J., Albany , N., Pliego , F., & Sánchez , C. (2023). Maduración y germinación de embriones somáticos de guayabo var. Enana Roja Cubana EEA-1840. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(4), e234032. Recuperado a partir de https://produccioncientifica.luz.edu.ve/index.php/agronomia/article/view/40918
Sección
Producción Vegetal