Physicochemical evaluation of humus and compost as a strategy to strengthen sustainable agriculture
Abstract
Soil degradation due to unsustainable anthropogenic management has generated the deterioration of its quality and health, for this reason alternatives such as the use of organic fertilizers are sought for the rehabilitation of its ecological functions. Therefore, the present study evaluated the physical-chemical properties of humus and compost produced at the Tunshi experimental station, Chimborazo, Ecuador, in order to validate their suitability for sustainable agriculture. Formulations based on local inputs were used, including guinea pig manure, plant residues, green manure, and rice husks. The analyses included parameters such as pH, electrical conductivity (EC), organic matter (OM) and macronutrients, following the Ecuadorian standard NTE INEN 211:1998 and the INIAP technical manual. The results revealed that the compost and humus formulations comply with quality standards, highlighting the F2 compost formulation and the H2 formulation for humus with their high total nitrogen and OM content. The compost (F3) and humus (H3) formulations showed higher levels of phosphorus and potassium, although with lower nitrogen content, where F2 (35 % guinea pig manure, 25 % green manure) and H2 (50 % guinea pig manure, 50 % plant residues) showed higher nitrogen and OM content, while in F3 (25 % guinea pig manure, 30 % green manure) and H3 (40 % guinea pig manure, 60 % plant residues), there were no significant differences in the parameters of the humus formulations. These fertilizers represent a viable and sustainable agroecological alternative for the rehabilitation of degraded soils.
Downloads
References
AL-Kayssi, A.W. (2021). Use of water retention data and soil physical quality index S to quantify hard-setting and degree of soil compactness indices of gypsiferous soils. Soil and Tillage Research, 206, 104805. https://doi.org/10.1016/J.STILL.2020.104805
Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S.F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 137852. https://doi.org/10.1016/J.SCITOTENV.2020.137852
Antonangelo, J.A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277, 111443. https://doi.org/10.1016/J.JENVMAN.2020.111443
Association of Official Analytical Chemists. (1984). Nitrogen (Total) in fertilizers. Modified combustion method (AOAC Official Method 978.02-1984). http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=471
Awoonor, J.K., Amoakwah, E., Buri, M.M., Dogbey, B.F., & Gyamfi, J.K. (2025). Impact of land use on soil quality: Insights from the forest-savannah transition zone of Ghana. Heliyon, 11(1), e41183. https://doi.org/10.1016/J.HELIYON.2024.E41183
Bhattacharya, D., Tripathy, S., Swain, D.K., & Mitra, A. (2024). Can organic farming improve the soil properties, food quality and human health?. Food and Humanity, 3, 100398. https://doi.org/10.1016/J.FOOHUM.2024.100398
Bonilla-Bedoya, S., Valencia, K., Herrera, M.., López-Ulloa, M., Donoso, D.A., & Macedo Pezzopane, J.E. (2023). Mapping 50 years of contribution to the development of soil quality biological indicators. Ecological Indicators, 148, 110091. https://doi.org/10.1016/J.ECOLIND.2023.110091
Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W., & Brussaard, L. (2018). Soil quality - A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/J.SOILBIO.2018.01.030
Chen, K., Li, J., Lin, L., Qin, W., Gao, Y., Hu, E., & Jiang, J. (2024). Occurrence, fate and control strategies of heavy metals and antibiotics in livestock manure compost land application: A review. Science of the Total Environment, 957, 177381. https://doi.org/10.1016/J.SCITOTENV.2024.177381
Dengiz, O., Alaboz, P., Saygın, F., Adem, K., & Yüksek, E. (2024). Evaluation of soil quality of cultivated lands with classification and regression-based machine learning algorithms optimization under humid environmental condition. Advances in Space Research, 74(11), 5514-5529. https://doi.org/10.1016/J.ASR.2024.08.048
Domínguez, J., & Gómez-Brandón, M. (2013). The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Management & Research, 31(8), 859–868. https://doi.org/10.1177/0734242X13497079
Ebrahimi, M., Gholipour, S., Mostafaii, G., & Yousefian, F. (2024). Biochar-amended food waste compost: A review of properties. Results in Engineering, 24, 103118. https://doi.org/10.1016/J.RINENG.2024.103118
Eijsackers, H., & Maboeta, M. (2023). Pesticide impacts on soil life in southern Africa: Consequences for soil quality and food security. Environmental Advances, 13, 100397. https://doi.org/10.1016/J.ENVADV.2023.100397
Faverial, J., Boval, M., Sierra, J., & Sauvant, D. (2016). End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. Journal of Environmental Management, 183, 909-916. https://doi.org/10.1016/J.JENVMAN.2016.09.057
Feicán Mejía, C. (2011). Manual de producción de abonos orgánicos. Estación Experimental del Austro-INIAP. http://repositorio.iniap.gob.ec/handle/41000/2396
Feng, D., Cui, Y., Zeng, Y., Wang, D., Zhang, H., Zhang, Y., & Song, W. (2024). Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. Chemosphere, 366, 143500. https://doi.org/10.1016/J.CHEMOSPHERE.2024.143500
García-Rández, A., Orden, L., Marks, E.A.N., Andreu-Rodríguez, J., Franco-Luesma, S., Martínez-Sabater, E., Saéz-Tovar, J.A., Pérez-Murcia, M.D., Agulló, E., Bustamante, M.A., Cháfer, M., & Moral, R. (2025). Monitoring of greenhouse gas emissions and compost quality during olive mill waste co-composting at industrial scale: The effect of N and C sources. Waste Management, 193, 33-43. https://doi.org/10.1016/J.WASMAN.2024.11.039
Hameed Ologunde, O., Kehinde Bello, S., & Abolanle Busari, M. (2024). Integrated agricultural system: A dynamic concept for improving soil quality. Journal of the Saudi Society of Agricultural Sciences, 23(5), 352-360. https://doi.org/10.1016/J.JSSAS.2024.03.002
Instituto Ecuatoriano de Normalización. (1997). Fertilizantes o abonos. Etiquetado. Requisitos (NTE INEN 221:1997, 1.ª revisión). https://www.agrocalidad.gob.ec/wp-content/uploads/2013/11/inen-0221-1997.pdf
Instituto Ecuatoriano de Normalización. (1998). Fertilizantes o Abonos. Tolerancias (NTE INEN 211:98). bit.ly/4mWmsJ9
International Organization for Standardization. (1994). Soil quality - Determination of phosphorus - Spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution (ISO 11263:1994). https://www.iso.org/standard/19241.html
International Organization for Standardization. (1995). Soil quality - Determination of total nitrogen - Modified Kjeldahl method (ISO 11261:1995). https://www.iso.org/standard/19239.html
International Organization for Standardization. (1998). Soil quality - Determination of organic carbon by sulfochromic oxidation (ISO 14235:1998). https://www.iso.org/standard/23140.html
Jiménez, L., Jiménez, W., González, L., Quichimbo, P., Fierro, N., & Capa-Mora, D. (2024). Rescuing local knowledge with regards to soil management and fertility in the Amazon region of Ecuador. Environmental Development, 50, 100984. https://doi.org/10.1016/J.ENVDEV.2024.100984
Kleemann, J., Koo, H., Hensen, I., Mendieta-Leiva, G., Kahnt, B., Kurze, C., Inclan, D.J., Cuenca, P., Noh, J.K., Hoffmann, M.H., Factos, A., Lehnert, M., Lozano, P., & Fürst, C. (2022). Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biological Conservation, 265, 109404. https://doi.org/10.1016/J.BIOCON.2021.109404
Kong, Y., Zhang, J., Zhang, X., Gao, X., Yin, J., Wang, G., Li, J., Li, G., Cui, Z., & Yuan, J. (2024). Applicability and limitation of compost maturity evaluation indicators: A review. Chemical Engineering Journal, 489, 151386. https://doi.org/10.1016/J.CEJ.2024.151386
Kuria, A.W., Barrios, E., Pagella, T., Muthuri, C.W., Mukuralinda, A., & Sinclair, F.L. (2019). Farmers’ knowledge of soil quality indicators along a land degradation gradient in Rwanda. Geoderma Regional, 16, e00199. https://doi.org/10.1016/J.GEODRS.2018.E00199
Li, Y., Herbst, M., Chen, Z., Chen, X., Xu, X., Xiong, Y., Huang, Q., & Huang, G. (2024). Long term response and adaptation of farmland water, carbon and nitrogen balances to climate change in arid to semi-arid regions. Agriculture, Ecosystems & Environment, 364, 108882. https://doi.org/10.1016/J.AGEE.2023.108882
Manzano Vela, D.R., Ortega Castro, J.O., & Moya, A.E. (2024a). Caracterización fisicoquímica del biol en varias mezclas generadas por biodigestión. Recursos Naturales Producción y Sostenibilidad, 3(1), 35-51. https://doi.org/10.61236/renpys.v3i1.596
Manzano Vela, D.R., Villegas Freire, C.N., Zabala Vizuete, R.F., & Flores Mancheno, A.C. (2024b). Utilization of forest residues for cellulose extraction from timber species in the high montane forest of Chimborazo, Ecuador. Polymers, 16(19), 2713. https://doi.org/10.3390/POLYM16192713
Naderi-Boldaji, M., & Keller, T. (2016). Degree of soil compactness is highly correlated with the soil physical quality index S. Soil and Tillage Research, 159, 41-46. https://doi.org/10.1016/J.STILL.2016.01.010
Niedrite, E., Klavins, L., Dobkevica, L., Purmalis, O., Ievinsh, G., & Klavins, M. (2024). Sustainable control of invasive plants: Compost production, quality and effects on wheat germination. Journal of Environmental Management, 371, 123149. https://doi.org/10.1016/J.JENVMAN.2024.123149
Potthast, K., Hamer, U., & Makeschin, F. (2010). Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry, 42(1), 56-64. https://doi.org/10.1016/J.SOILBIO.2009.09.025
Rani, M., Kaushik, P., Bhayana, S., & Kapoor, S. (2023). Impact of organic farming on soil health and nutritional quality of crops. Journal of the Saudi Society of Agricultural Sciences, 22(8), 560-569. https://doi.org/10.1016/J.JSSAS.2023.07.002
Reyes-Torres, M., Oviedo-Ocaña, E.R., Domínguez, I., Komilis, D., & Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77, 486-499. https://doi.org/10.1016/J.WASMAN.2018.04.037
Sánchez-Cortez, J.L. (2019). Conservation of geoheritage in Ecuador: Situation and perspectives. International Journal of Geoheritage and Parks, 7(2), 91-101. https://doi.org/10.1016/J.IJGEOP.2019.06.002
Sánchez, Ó.J., Ospina, D.A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
Satriani, A., Belviso, C., Lovelli, S., di Prima, S., Coppola, A., Hassan, S.B.M., Rivelli, A.R., & Comegna, A. (2024). Impact of a synthetic zeolite mixed with soils of different pedological characteristics on soil physical quality indices. Geoderma, 451, 117084. https://doi.org/10.1016/J.GEODERMA.2024.117084
Serri, D.L., Pérez-Brandan, C., Meriles, J.M., Salvagiotti, F., Bacigaluppo, S., Malmantile, A., & Vargas-Gil, S. (2022). Development of a soil quality index for sequences with different levels of land occupation using soil chemical, physical and microbiological properties. Applied Soil Ecology, 180, 104621. https://doi.org/10.1016/J.APSOIL.2022.104621
Tao, R., Cui, M., Li, Y., Wang, J., He, W., Zhao, Y., Xie, W., Shen, Y., Feng, Y., & White, J.C. (2024). Nanoscale biochar for fertilizer quality optimization in waste composting: Microbial community regulation. Bioresource Technology, 414, 131571. https://doi.org/10.1016/J.BIORTECH.2024.131571
Vasu, D., Tiwary, P., & Chandran, P. (2024). A novel and comprehensive soil quality index integrating soil morphological, physical, chemical, and biological properties. Soil and Tillage Research, 244, 106246. https://doi.org/10.1016/J.STILL.2024.106246
Vaz-Moreira, I., D’Arnese, A., Knoll, M., Teixeira, A.M., Barbosa, J.B., Teixeira, P., & Manaia, C.M. (2025). Bacteriological safety and quality of composted products from animal, urban or sewage sludge wastes. Environmental Pollution, 364, 125329. https://doi.org/10.1016/J.ENVPOL.2024.125329
Wang, S., Chen, D., Zhang, X., Xu, J., Lei, W., Zhou, C., Chen, C., Li, F., & Wang, N. (2019). Humus composition of mineral–microbial residue from microbial utilization of lignin involving different mineral types. Canadian Journal of Soil Science, 99(2), 208-216. https://doi.org/10.1139/CJSS-2018-0135
Wang, X., You, G., Liu, C., & Sun, Y. (2025). Bioaugmentation strategies in co-composting anaerobically digested food waste with agricultural by-products: Enhancing fertilizer quality and microbial communities. Ecotoxicology and Environmental Safety, 290, 117539. https://doi.org/10.1016/J.ECOENV.2024.117539
Wen, Y., Yao, W., Yu, T., Cheng, L., Zhang, Q., Yang, J., Lin, F., Zhu, H., Gunina, A., Yang, Y., Mganga, K.Z., Zeng, Z., & Zang, H. (2025). Long-term organic farming improves the red soil quality and microbial diversity in subtropics. Agriculture, Ecosystems & Environment, 381, 109410. https://doi.org/10.1016/J.AGEE.2024.109410
Yang, X., Yan, R., Li, S., Li, F., Yang, C., Zhang, H., Lyu, H., Liu, T., Zhou, L., Li, W., Duo, J., Li, R., & Yao, Y. (2024). Soil drives humus formation during composition of wheat straw and cattle manure. Journal of Environmental Chemical Engineering, 12(4), 113271. https://doi.org/10.1016/J.JECE.2024.113271
Yin, Z., Zhang, L., & Li, R. (2021). Effects of additives on physical, chemical, and microbiological properties during green waste composting. Bioresource Technology, 340, 125719. https://doi.org/10.1016/J.BIORTECH.2021.125719
Ziajahromi, S., & Leusch, F.D.L. (2022). Systematic assessment of data quality and quality assurance/quality control (QA/QC) of current research on microplastics in biosolids and agricultural soils. Environmental Pollution, 294, 118629. https://doi.org/10.1016/J.ENVPOL.2021.118629
Copyright (c) 2025 Dennis Renato Manzano Vela, Vicente Javier Parra León, Susana Monserrat Zurita Polo, Máyuri Viviana Pico Gordón

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.