Comparison of Free and Liposomal Levamisole Antiparasitic Activity in Sheep

Keywords: Antiparasitic activity, levamisole, liposome, sheep

Abstract

Worldwide, parasitic organisms residing in the digestive systems of sheep cause substantial economic losses. Various antiparasitic chemicals are employed to combat parasites, mostly levamisole. Nevertheless, parasites have developed resistance to the treatments employed in recent years. Consequently, scientists are currently seeking more effective medicinal compositions. The utilization of liposomes is one of the most extensively studied techniques to enhance pharmaceutical efficacy. This study assessed the antiparasitic efficacy of both free and liposomal levamisole. In this study four groups, each containing 12 animals, were formed: Group 1; free levamisole group (FLOG) received a single oral dose of free levamisole at 7.5 mg/kg; Group 2; liposomal levamisole group (LLOG) received a single oral dose of liposomal levamisole at 7.5 mg/kg; Group 3; (Positive Control: PCG) received a single oral dose of physiological serum at 7.5 mg/kg, and Group 4; served as the negative control (NCG). Fecal specimens were collected from the rectum into sterile containers on days 0, 7, 14, 21, and 28. The McMaster method was employed in the study to quantify eggs per gram of feces (EPG) loading. The efficacy of treatment groups was assessed using  the  Fecal Egg Count Reduction (FECR) formula. According to the FECR formula, Strongylids had a treatment efficacy of 65.36% in the FLOG group and 70.67% in the  LLOG  group,  Trichuris had 41.78% and 74.22%, and Nematodirus had 52.78% and 71.85%. The efficacy of treatment was higher in the liposomal levamisole group compared to the free levamisole group. This study established the antiparasitic efficacy of liposomal levamisole for the first time. Further research are required to evaluate the antiparasitic effects of liposomal levamisole through the administration of varied and recurrent doses.

Downloads

Download data is not yet available.

References

Aydin KB, Ye B, Brito LF, Ulutaş Z, Morota G. Review of sheep breeding and genetic research in Türkiye. Front. Genet. [Internet]. 2024; 15:1308113. doi: https://doi.org/pcsx

Jacobson C, Larsen JW, Besier RB, Lloyd JB, Kahn LP. Diarrhoea associated with gastrointestinal parasites in grazing sheep. Vet. Parasitol. [Internet]. 2020; 282:109139. doi: https://doi.org/pcsz

Erez MS, Doğan İ, Kozan E, Göksu A. A survey of knowledge, approaches, and practices surrounding parasitic infections and antiparasitic drug usage by veterinarians in Türkiye. Animals. [Internet]. 2023; 13(17):2693. doi: https://doi.org/pcs4

Raue K, Heuer L, Böhm C, Wolken S, Epe C, Strube C. 10- year parasitological examination results (2003 to 2012) of faecal samples from horses, ruminants, pigs, dogs, cats, rabbits and hedgehogs. Parasitol. Res. [Internet]. 2017; 116:3315-3330. doi: https://doi.org/pcs6

Değer MS, Biçek K, Karakuș A. Prevalence of Dicrocoelium dentriticum in sheep and goats slaughtered in Van region (Van municipality slaughterhouse). Van. Vet. J. [Internet]. 2017 [cited 10 Dec 2024]; 28(1):1-24. Available in: https://goo.su/tncfGHg

Aydın A. Hakkâri Belediye Mezbahasında Kesilen Hayvanlarda Anolocephalidae Türlerinin Yayılışı. Van. Vet. J. [Internet]. 2013[cited 10 Dec 2024]; 24(1):5-8. Available in: https://goo.su/UQwsSJU

Sevimli F. Checklist of small ruminant gastrointestinal nematodes and their geographical distribution in Turkey. Turk. J. Vet. Anim. Sci. [Internet]. 2013; 37(4):369-379. doi: https://doi.org/pcs7

Yıldırım A, İça A. Kayseri yöresinde koyunlarda akciğer kıl kurdu enfeksiyonlarının prevalansı. Erciyes Üniv. Vet. Fak. Derg. [Internet]. 2005 [cited 10 Dec 2024]; 2(2):73-78. Available in: https://goo.su/Ag4E2z

Hu Y, Xiao SH, Aroian RV. The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Negl. Trop. Dis. [Internet]. 2009; 3(8):e499. Available in: https://goo.su/vqvpfZZ

Antonopoulos A, Charvet CL, Maitland K, Doyle SR, Neveu C, Laing R. Functional validation of novel levamisole resistance marker S168T in Haemonchus contortus. Int. J. Parasitol. Drugs Drug. Resist. [Internet]. 2024; 24:100524. doi: https://doi.org/pcs8

Gholami MH, Rassouli A, Mirzaei S, Hashemi F. The potential immunomodulatory effect of levamisole in humans and farm animals. JAVAR. [Internet]. 2023; 10(4):620–629. doi: https://doi.org/pcs9

Oliveira CC, Costa DFL, Limeira CH, Nogueira DB, Nascimento BHR, Vaz AFM. Anthelmintic intoxication in goats and sheep: A systematic review. Res. J. Vet. [Internet]. 2022; 152:657–662. doi: https://doi.org/pctb

Selzer PM, Epe C. Antiparasitics in Animal Health: Quo Vadis?. Trends Parasitol. [Internet]. 2021; 37(1):77–89. doi: https://doi.org/ghxn75

Tınar R, Akyol ÇV, Çırak VY, Şenlik B, Bauer C. Investigations on the seasonal patterns of strongyle infections in grazing lambs and the occurarence of antelmintic resistance on sheep and goat farm in Western Anatolia, Turkey. Parasitol. Res. [Internet]. 2005; 96:18-23. doi: https://doi.org/bh5fx2

Aditya NP, Vathsala PG, Vieira V, Murthy RSR, Souto EB. Advances in nanomedicines for malaria treatment. Adv. Colloid Interface Sci. [Internet]. 2013; 201-202:1-17. doi: https://doi.org/gbd74r

Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar. J. [Internet]. 2021; 20(1):327. doi: https://doi.org/pctc

Gokbulut C, Yalinkilinc HS, Aksit D, Veneziano V. Comparative pharmacokinetics of levamisole- oxyclozanide combination in sheep and goats following per os administration. Can. Vet. J. [Internet]. 2014; 78(4):316-320. PMID: 25356001 Available in: https://n9.cl/uo77r

Fernández M, García JJ, Sierra M, Diez MJ, Terán MT. Bioavailability of levamisole after intramuscular and oral administration in sheep. N. Z. Vet. J. [Internet].1998; 46(5):173-176. doi: https://doi.org/b9nz8k

Susar H, Çelebi M, Çelebi Ç, Çoban Ö, Şen H, Karahan İ. Preparation and characterisation of liposomal formulations of Levamisole and Albendazole used in Veterinary Medicine. Rev. Cient. FCV LUZ. [Internet]. 2024; 34(2):1-8. doi: https://doi.org/pctd

Çoban Ö, Yıldırım S, Bakır T. Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsions: development, characterization, and evaluation of stability. J. Pharm. Innov. [Internet]. 2022; 17(2):510-520. doi: https://doi.org/m7xz

Połozowski A, Zawadzki W, Nowak M. Comparison of two fecal flotation techniques for diagnostic of internal parasites infections in swine and dogs. EJPAU. [Internet]. 2006 [cited 10 Dec 2024]; 9(4):39. Available in: https://goo.su/M5SdA

Gökbulut C, Özüiçli M, Akşit D, Aksöz E, Korkut O, Yalcinkaya M, Cirak VY. Comparative plasma and milk dispositions, faecal excretion and efficacy of per os ivermectin and pour-on eprinomectin in horses. JVPT. [Internet]. 2016;39(6):584–591. doi: https://doi.org/f9c9p3

Michael R. Sheldon MS, Michael J, Fillyaw W, Thompson D. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. [Internet]. 1996; 1(4):221-228. doi: https://doi.org/dchwsz

Pahor-Filho E, Júnior JE, Pilarski F, Urbinati EC. Levamisole reduces parasitic infection in juvenile pacu (Piaractus mesopotamicus). Aquac. [Internet]. 2017; 470:123-128. doi: https://doi.org/f9tsx7

Zoghroban HS, Elmansory BM, Issa YA, Eltokhy AK, Abo- Safia HS, Maghraby GM, Salama AM. Novel insights on the therapeutic effect of levamisole on the chronic toxoplasmosis in mice model. Exp. Parasitol. [Internet]. 2023; 248:108515. doi: https://doi.org/pctf

Piña-Vázquez DM, Mayoral-Peña Z, Gómez-Sánchez M, Salazar-Olivo LA, Arellano-Carbajal F. Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and Levamisole-resistant Caenorhabditis elegans strains. J. Ethnopharmacol. [Internet]. 2017; 202:92–96. doi: https://doi.org/f96cn3

Feyera T, Ruhnke I, Sharpe B, Elliott T, Shifaw A, Walkden- Brown SW. Comparative therapeutic efficacies of oral and in-water administered levamisole, piperazine and fenbendazole against experimental Ascaridia galli infection in chickens. Vet. Parasitol. [Internet]. 2021; 298:109514. doi: https://doi.org/pctg

Bruxel F, Laux M, Wild LB, Faraga M, Koester LS, Teixeira HF. Nanoemulsions as parenteral drug delivery systems. Quim. Nova. [Internet]. 2011; 35(9):1827-1840. doi: https://doi.org/gqtd9q

Bharathi D, Lee JH, Lee J. Enhancement of antimicrobial and antibiofilm activities of liposomal fatty acids. Colloids Surf. B. Biointerfaces. [Internet]. 2024; 234:113698. doi: https://doi.org/pcth

Zhong C, Liu T, Diao J, Li X, Liu M, Wang Y. Preparation and characterization of astaxanthin-loaded liposomes by phytosterol oleate instead of cholesterol. Food Chem. [Internet]. 2025; 462:41008. doi: https://doi.org/pctj

Bhat UM, Khan NA, Raza SN, Ali M, Mehdi S, Mohiuddin I, Shakeel F, Bhat ZA, Bader GN, Chashoo IA, Din-Wani SU. Ciprofloxacin hydrochloride-loaded ocular silk fibroin liposomes: formulation, characterisation, in vitro cytotoxicity, and antimicrobial activity. Heliyon. [Internet]. 2024; 10(22):e38777. doi: https://doi.org/pctk

Nazmi-Yüksek TE, Yüksek N, Altuğ N, Gül A. Koyunlarda endoparazit enfeksiyonlarında Triklabendazol - Levamizol kombinasyonunun tedavi etkinliği. Van Vet. J. [Internet]. 2007 [cited 10 Dec 2024]; 18(1):19-24. Available in: https://goo.su/Gex14

Pandit S, Baidya S, Jas R. Effects of levamisole on haemato-biochemical profiles of naturally occurring gastrointestinal nematodosis in Garole sheep. IJRD. [Internet]. 2017 [cited 10 Dec 2024]; 2(1):1-6. Available in: https://goo.su/NP8TMB

Luque S, Lloberas M, Cardozo P, Virkel G, Farias C, Viviani P, Lanusse C, Alvarez L, Lifschitz A. Combined moxidectin-levamisole treatment against multidrug- resistant gastrointestinal nematodes: A four-year efficacy monitoring in lambs. Vet. Parasitol. [Internet]. 2021; 290:109362. doi: https://doi.org/g7wnns

Mushonga AN, Washaya S, Nyamushamba GB. Resistance of gastrointestinal nematodes to anthelmintics in sheep production in Zimbabwe. FAHN. [Internet]. 2024; 3(1): 22-27. doi: https://doi.org/pctm

Salgado JA, Cruz LV, Olivera da Rocha L, Sotomaior CS, Borges TD, Santos CDP. Implication of the fecal egg count reduction test (FECRT) in sheep for better use of available drugs. Rev. Bras. Parasıtol. V. [Internet]. 2019; (4):700- 707. doi: https://doi.org/pctn

İssi M, Gül G, Başbuğ O. Bir atta akut levamizol zehirlenmesi. F.Ü. Sağlık Bilimleri Veteriner Dergisi. [Internet]. 2010 [cited 10 Dec 2024]; 24(1):47-50. Available in: https://goo.su/L7hnDq

Rather MA, Dar MA, Dar TA, Hameed A, Ahmad M, Munawar F, Ahanger SA. Acute levamisole-fenbendazole (LEVOB) poisoning in a sheep flock. Anim. Sci. [Internet]. 2020[cited 10 Dec 2024]; 1(1):31-33. Available in: https://goo.su/cCC1l0

Müller KR, Dwyer C. Suspected levamisole intoxication in calves. NZVJ. [Internet]. 2016; 64(4):257–260. doi: https://doi.org/pctp

Vlassoff A, Leathwick DM, Heath ACG. The epidemiology of nematode infections of sheep. NZJ. [Internet]. 2001; 49(6):213-221. doi: https://doi.org/bnk5tm

Muñoz JA, Angulo-Cubillán F, Ramírez R, Vale O, Chacín E, Simoes D, Atencio A. Eficacia antihelmíntica de doramectina 1%, ivermectina 1% y ricobendazol 15% frente a nematodos gastrointestinales en ovinos de pelo. Rev. Cient. FCV-LUZ. [Internet]. 2008; 18(1):12-6. Disponible en: https://goo.su/DSzZ

Published
2025-04-15
How to Cite
1.
Özüiçli M, Susar H, Çelebi M, Çelebi Çağla, Şen H, Karahan İzzet. Comparison of Free and Liposomal Levamisole Antiparasitic Activity in Sheep. Rev. Cient. FCV-LUZ [Internet]. 2025Apr.15 [cited 2025Jul.29];35(2):8. Available from: https://produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/43795
Section
Veterinary Medicine