Prevalence and control of Cotylophoron spp.: An emerging parasitic infection among dairy cattle herds established in rural areas of the tropical Andes, Merida, Venezuela
Abstract
In order to determine the prevalence and the controlled effect of two anthelmintics on Cotylophoron spp. in bovine herds in Mérida, Venezuela, four dairy farms were visited where 30 cows, with an average weight of 449.54 ± 59.20 kg and a mean body condition score of 2.98 ± 0.62, were randomly selected from each farm, all of which were naturally infected with Cotylophoron spp. For the parasitological diagnosis, fecal samples were taken directly from the rectum and placed in labeled plastic bags to be stored at 4ºC until they arrived at the laboratory; subsequently, three groups were randomly organized, each consisting of 10 animals. The first group was administered 3 mg of rafoxanide/kg of body weight subcutaneously; the second group received an oral mixture of 15 mg of oxyclozanide/kg + 7.5 mg of levamisole/kg, and the control group remained untreated. To monitor the effectiveness of the drugs, coprological analyses were conducted using the modified sedimentation and sieving test on days 0, 15, 30, 60, and 90 post-treatment, along with the recording of body weight. The prevalence of Cotylophoron spp. was found to be 97.29 ± 2.19%, averaging 140.5 ± 83.21 eggs in the total feces evaluated; meanwhile, the animals dewormed with oxyclozanide + levamisole showed a significant reduction (P≤0.05) of 92.23 ± 4.70% in parasitic load by d 15 of treatment, while those treated with rafoxanide reduced the eggs present in the feces by 43.88 ± 18.80%; additionally, there was a weight gain (P≤0.05) in the cows that received oxyclozanide + levamisole, a value significantly different from that obtained in animals treated with rafoxanide and the control, which were
statistically similar (P≥0.05). It is concluded that Cotylophoron spp. is resistant to the use of rafoxanide, while the combination of oxyclozanide and levamisole showed reduced efficacy for its control.
Downloads
References
Terfa W, Kumsa B, Ayana D, Maurizio A, Tessarin C, Cassini R. Epidemiology of gastrointestinal parasites of cattle in three Districts in Central Ethiopia. Animals [Internet]. 2023; 13(2):285. doi: https://doi.org/n5ht
Kahl A, Samson-Himmelstjerna G, Krücken J, Ganter M. Chronic wasting due to liver and rumen flukes in sheep. Animals [Internet]. 2021; 11(2):549. doi: https://doi.org/n5hv
Conga D, Gomez-Puerta L, Mayor P. Cotylophoron panamensis (Trematoda: Paramphistomidae) in Mazama americana (Artiodactyla: Cervidae) free-living in remote areas in the Peruvian Amazon. Vet. Parasitol. (Amst.) [Internet]. 2022; 27:100667. doi: https://doi.org/n5hw
Mitchell G, Ketzis J, Metzler D, Alvarado J, Skuce P, Lawton S. Identification of Cotylophoron cotylophorum (Fischoeder, 1901) in cattle on St. Kitts, West Indies and its relationship with African and Asian populations. Parasitol. Int. [Internet]. 2023; 95:102751. doi: https://doi.org/n5hx
Tookhy N, Nur-Mahiza M, Mansor R, Yasmin A, Ahmad I, Hamzah N, Idris L. Rumen fluke in cattle and buffaloes in Asia: a review. Pertanika J. Trop. Agric. Sci. [Internet]. 2022; 45(3):781-803. doi: https://doi.org/n5hz
Priya P, Veerakumari L. Morphological and histological analysis of Cotylophoron cotylophorum treated with Acacia concinna. Trop. Parasitol. [Internet]. 2017; 7(2):92-97. doi: https://doi.org/10.4103/tp.TP_65_16
Sivaraman S, Desingu-Raja D, Arulmozhi A, Rajkumar R. Case study: Successful therapeutic management of ascites in a crossbred Jersey cow due to amphistomiasis. Int. J. Curr. Microbiol. Appl. Sci. [Internet]. 2021; 10(2):524-527. doi: https://doi.org/n5h2
Amaral V, Sousa D, Benigno R, Pinheiro R, Gonçalves E, Giese E. Cotylophoron marajoensis n. sp. (Digenea: Paramphistomidae) a parasite of Bubalus bubalis on Marajó Island, Pará, Brazilian Amazon. Rev. Bras. Parasitol. Vet. [Internet]. 2020; 29(4):e018320. doi: https://doi.org/n5h3
Kebede I, Beriso T, Mengistu T, Gebremeskel H. Study on cattle Trematodiasis and related risk factors in Damot Sore District, Wolaita Zone, southern Ethiopia. J. Parasitol. Res. [Internet]. 2023; 10:6687665. doi: https://doi.org/n5h4
Hajipour N, Mirshekar F, Hajibemani A, Ghorani M. Prevalence and risk factors associated with amphistome parasites in cattle in Iran. Vet. Med. Sci. [Internet]. 2021; 7(1):105-111. doi: https://doi.org/gs6z62
Forstmaier T, Knubben-Schweizer G, Strube C, Zablotski Y, Wenzel C. Rumen (Calicophoron/Paramphistomum spp.) and liver flukes (Fasciola hepatica) in cattle-prevalence, distribution, and impact of management factors in Germany. Animals. [Internet]. 2021; 11(9):2727. doi: https://doi.org/n5h5
Strydom T, Lavan R, Torres S, Heaney K. The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production. Animals [Internet]. 2023; 13(10):1599. doi: https://doi.org/gs6vrv
Villa P, Pérez-Sánchez A, Nava F, Acevedo A, Cadenas D. Local-scale seasonality shapes anuran community abundance in a cloud forest of the tropical andes. Zool. Stud. [Internet]. 2019; 58:17. doi: https://doi.org/n5h7
Win S, Win M, Thwin E, Htun L, Hmoon M, Chel H, Thaw Y, Soe N, Phyo T, Thein S, Khaing Y, Than A, Bawm S. Occurrence of gastrointestinal parasites in small ruminants in the central part of Myanmar. J. Parasitol. Res. [Internet]. 2020; 2020:8826327. doi: https://doi.org/n5h8
Althubaiti A. Sample size determination: a practical guide for health researchers. J. Gen. Fam. Med. [Internet]. 2023; 24(2):72-78. doi: https://doi.org/n5h9
Batista-Carneiro M, Freire-Martins I, Rauta De Avelar B, Barbour-Scott F. Sedimentation technique (Foreyt, 2005) for quantitative diagnosis of Fasciola hepatica eggs. J. Parasit. Dis. Diagn. Ther. [Internet]. 2018; 3(1):6-9. doi: https://doi.org/mm9k
Graham-Brown J, Williams D, Skuce P, Zadoks R, Dawes S, Swales H, Van Dijk J. Composite Fasciola hepatica faecal egg sedimentation test for cattle. Vet. Record. [Internet]. 2019; 184(19):589. doi: https://doi.org/gs6vsn
Thanasuwan S, Piratae S, Tankrathok A. Prevalence of gastrointestinal parasites in cattle in Kalasin Province, Thailand. Vet. World. [Internet]. 2021; 14(8):2091-2096. doi: https://doi.org/grmkc8
Hasan M, Roy B, Biswas H, Rahman M, Anisuzzaman A, Zahangir M, Talukder H. Efficacy of flukicides on Fasciola gigantica, a food-borne zoonotic helminth affecting livestock in Bangladesh. Parasitology. [Internet]. 2022; 149(10):1339-1348. doi: https://doi.org/n5jb
André W, Cavalcante G, Ribeiro W, Santos J, Macedo I, Paula H, Morais S, Melo J, Bevilaqua C. Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice. Braz. J. Vet. Parasitol. Jaboticabal [Internet]. 2017; 26(3):323-330. doi: https://doi.org/gpwff3
Nzalawahe J, Hannah R, Kassuku A, Stothard J, Coles G, [29] Gokbulut C, Yalinkilinc H, Aksit D, Veneziano V. Eisler M. Evaluating the effectiveness of trematocides Compar ative pharmacokinetics of le v amisole -against Fasciola gigantica and amphistomes infections oxyclozanide combination in sheep and goats following in cattle, using faecal egg count reduction tests in Iringa per os administration. Can. Vet. J. Res. [Internet]. Rural and Arumeru Districts, Tanzania. Parasites & 2014[Consultado 19 Ago.2024]; 78(4):316-320, PMID: Vectors. [Internet]. 2018; 11:384. doi: https://doi.org/n5jc 25356001. Disponible en: https://goo.su/GGMK
R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. 2024 [Consultado 18 Julio 2024]. Disponible en: https://n9.cl/scu0
Hernández-Hernández J, González-Garduño R, OrtízPérez D, Villa-Mancera A, Arias-Vázquez M, PazSilva A. Prevalence of flukes (Fasciola hepatica and paramphistomids) in cattle in south-eastern Mexico. Helminthologia [Internet]. 2023; 60(2):141-151. doi: https://doi.org/n5jf
Forlano M, Henríquez H, Meléndez R. Incidencia y prevalencia de Cotylophoron spp. (Trematoda: Digenea) en bovinos del Asentamiento Campesino “Las Majaguas”. Portuguesa-Venezuela 1996-1997. Gaceta de Ciencias Veterinarias [Internet]. 2001 [Consultado 12 Ago. 2024]; 7(1):15-23. Disponible en: https://goo.su/gXglNaV
Hofmeester T, Bügel E, Hendrikx B, Maas M, Franssen F, Sprong H, Matson K. Parasite load and site-specific parasite pressure as determinants of immune indices in two sympatric rodent species. Animals [Internet]. 2019; 9(12):1015. doi: https://doi.org/n5jg
García-Dios D, Díaz P, Viña M, Remesar S, Prieto A, LópezLorenzo G, Díaz-Cao J, Panadero R, Díez-Baños P, López C. Efficacy of oxyclozanide and closantel against rumen flukes (Paramphistomidae) in naturally infected sheep. Animals [Internet]. 2020; 10(11):1943. doi: https://doi.org/n5jh
Ico-Gómez R, González-Garduño, R, Ortíz-Pérez D, Mosqueda-Gualito J, Flores-Santiago E, Sosa-Pérez G, Salazar-Tapia A. Assessment of anthelmintic effectiveness to control Fasciola hepatica and paramphistome mixed infection in cattle in the humid tropics of Mexico. Parasitology [Internet]. 2021; 148(12):1458-1466. doi: https://doi.org/gs6z6r
Rojas-Moncada J, Sotelo-Camacho J, Torrel-Pajares S, Vargas-Rocha L. Oxyclozanide in dairy cattle in the Cajamarca valley, as an alternative in the control of Calicophoron microbothrioides. J. Selva Andin. Anim. Sci. [Internet]. 2022; 9(2):90-96. doi: https://doi.org/n5jj
Gokbulut C, Yalinkilinc H, Aksit D, Veneziano V. Comparative pharmacokinetics of levamisoleoxyclozanide combination in sheep and goats following per os administration. Can. Vet. J. Res. [Internet]. 2014[Consultado 19 Ago.2024]; 78(4):316-320, PMID: 25356001. Disponible en: https://goo.su/GGMK
LKiju P, Sadaula A, Thapa P, Pokheral C. Efficacy of levamisole and oxyclozanide treatment on gastrointestinal nematodes of ungulates at the Central Zoo, Nepal. J. Threat. Taxa. [Internet]. 2023; 15(10):24079–24085. doi: https://doi.org/n5jk
Osman O, Goreish I. The Efficacy of triclabendazole and oxyclozanide against natural Fasciola gigantica infection in cattle. Sudan J. Vet. Res. [Internet]. 2013[Consultado 22 Julio 2024]; 28:37-42. Disponible en: https://goo.su/EKbW
Sanabria R, Moreno L, Alvarez L, Lanusse C, Ramos J. Efficacy of oxyclozanide against adult Paramphistomum leydeni in naturally infected sheep. Vet. Parasitol. [Internet]. 2014; 206(3-4):277-281. doi: https://doi.org/f6v842
Dong Z, Sun J, Bai Y, Wang W, Zhu Y, Li B, Cheng F, Wei X, Song E, Cheng H, Jiang F, Zhou X, Zhang J. Target animal safety testing of an oral salicylanilide suspension, oxyclozanide, for the treatment of fascioliasis in bovine in China. Regul. Toxicol. Pharmacol. [Internet]. 2019; 103:21-33. doi: https://doi.org/gq5grt
Shaheen H, Sadek K, Bazh E. Evaluation of oxyclozanide a n d n i c l o s a m i d e c o m b i n a t i o n a s a l t e r n a t i v e antiparamphistomal therapy in buffaloes. Afr. J. Pharmacy Pharmacol. [Internet]. 2013; 7(30): 2157-2166. doi: https://n9.cl/enj5d
Atcheson E, Lagan B, McCormick R, Edgar H, Hanna R, Rutherford N, McEvoy A, Huson K, Gordon A, Aubry A, Vickers M, Robinson M, Barley J. The effect of naturally acquired rumen fluke infection on animal health and production in dairy and beef cattle in the UK. Front. Vet. Sci. [Internet]. 2022; 9:968753. doi: https://doi.org/n5jn
Alí M, Carlile G, Giasuddin M. Impact of global climate change on livestock health: Bangladesh perspective. Open Vet. J. [Internet]. 2020; 10(2):178-188. doi: https://doi.org/n5jp
Trenberth k. Changes in precipitation with climate change. Clim. Res. [Internet]. 2011; 47(1-2):123-138. doi: https://doi.org/ckmtbq
Pfukenyi D, Mukaratirwa S. Amphistome infections in domestic and wild ruminants in East and Southern Africa: a review. Onderstepoort J. Vet. Res. [Internet]. 2018; 85(1):e1-e13. doi: https://doi.org/gfjncz
Davy J, Forero L, Strickler S, Gillespie J, Maier G. Comparison of deworming strategies for pre-weaned beef calves. Vet. Parasitol. [Internet]. 2023; 322:110005. doi: https://doi.org/n5jq
Ibrahiem H, Alsenosy A, El-Ktany E, Ata E, Abas O. Anthelmintic efficacy and pharmcodynamic effects of levamisole oxyclozanide combination as (Levanide®) in fattening calves. Egypt. J. Vet. Sci. [Internet]. 2023; 54(6):1245-1254. doi: https://doi.org/n5jr
