The effect of Dimethoate on oxidative stress and antioxidant responses of Pontastacus leptodactylus
Abstract
Dimethoate (DMT) pesticide is one of the chemicals used to protect some agricultural areas from harmful organisms. DMT residues released directly or indirectly to the environment cause serious problems in nature. DMT residues mixed with the aquatic environment adversely affect aquatic organisms and this effect is carried to humans through the food chain. In this study, oxidative stress responses induced by DMT pesticide in Pontastacus leptodactylus were investigated. For this purpose, oxidative stress and antioxidant parameters Thiobarbituric acid reactive substances (TBARS), Glutathione (GSH), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus at 17.5, 35, and 70 mg·L-1 concentrations at 24 and 96 hours were investigated. Results were determined using ELISA kits. No significant difference was observed in GSH levels and SOD activities compared to control. Statistically significant differences were observed between decreases in CAT and GPx activities and increases in TBARS levels. SPSS 24.0 package program one–way ANOVA (Duncan 0.05) was used in the evaluation of biochemical analyzes. As a result, it was determined that DMT caused oxidative stress formation in P. leptodactylus and caused changes in enzyme activities.
Downloads
References
Aydin AN, Serdar O, Aydin R. Determination of lethal concentrations (LC50) of Cyfluthrin, Dimethoate insecticides on Gammarus pulex (L. 1758). Acta Aquat. Turc. [Internet]. 2022; 18(3):384-392. doi: https://doi.org/g8zvhm
Reberski JL, Terzić J, Maurice LD, Lapworth DJ. Emerging organic contaminants in karst groundwater: A global level assessment. J. Hydrol. [Internet]. 2022; 604:127242. doi: https://doi.org/gtz8rt
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar SM. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere [Internet]. 2022; 287(Part 2):132216. doi: https://doi.org/gmr9zm
Halbach K, Möder M, Schrader S, Liebmann L, Schäfer RB, Schneeweiss A, Schreiner VC, Vormeier P, Weisner O, Liess M, Reemtsma T. Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Res. [Internet]. 2021; 203:117535. doi: https://doi.org/gmvkj2
Brunelle LD, Huang IJ, Angeles LF, Running LS, Sirotkin HI, McElroy AE, Aga DS. Comprehensive assessment of chemical residues in surface and wastewater using passive sampling, chemical, biological, and fish behavioral assays. Sci. Tot. Env. [Internet] 2022; 828:154176. doi: https://doi.org/gvwwbs
Nicolopoulou–Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in Agriculture. Front. Public Health [Internet]. 2016; 4:148. doi: https://doi.org/gf54vv
Choudri BS, Charabi Y, Ahmed M. Pesticides and herbicides. Water Environ. Res. [Internet]. 2018; 90:1663-1678. doi: https://doi.org/g8zvhn
Yüksel F, Aydin R, Serdar O, Pala A. Examining the biochemical effect of malathion pesticide on Gammarus pulex (L.,1798). Fresenius Environ. Bull. [Internet]. 2020 [cited 12 Jun. 2024]; 29(10):9490-9497. Available in: https://goo.su/mkzUI
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward, Chemosphere [Internet]. 2022; 307(Part. 3):136018. doi: https://doi.org/gzhm4h
Odun NA, Serdar O. Zebra Midye (Dreissena polymorpha)’de Malathionun Akut Toksisitesi (LC50)’nin Belirlenmesi [Determination of Acute Toxicity (LC50) of Malathion in Zebra Mussel (Dreissena polymorpha)]. J. Anatol. Environ. Anim. Sci. [Internet]. 2022; 7(3):269-273. Turkish. doi: https://doi.org/g8zvhp
Karataş M, editor. Research methods in fish biology. 2nd ed Ankara (Türkiye): Nobel Publishing; 2005. 512 p.
Bhattacharjee R, Sil PC. The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytother. Res. [Internet]. 2006; 20(7):595-601. doi: https://doi.org/fpsh87
Batista MTO, Rodrigues Junior E. Feijó–Oliveira M, Ribeiro AC, Rodrigues E, Suda CNK, Vani GS. Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin. Rev. Ambient. Água. [Internet]. 2014; 9(4):621-631. doi: https://doi.org/g8zvhq
Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pestic. Biochem. Physiol. [Internet]. 2011; 101(1):1-5. doi: https://doi.org/dgx2bc
Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ. Toxicol. Pharmacol. [Internet]. 2012; 33(2):334-343. doi: https://doi.org/fxx463
Uçar A, Parlak V, Özgeriş FB, Çilingir Yeltekin A, Alak G, Atamanalp M. Determination of Fipronil toxicity by different biomarkers in gill and liver tissue of rainbow trout (Oncorhynchus mykiss). In Vitro Cell. Dev. Biol. Anim. [Internet]. 2020; 56(7):543-549. doi: https://doi.org/g8zvhr
Lebrun JD, Geffard O, Urien N, François A, Uher E, Fechner LC. Seasonal variability and inter–species comparison of metal bioaccumulation in caged gammarids under urban diffuse contamination gradient: implications for biomonitoring investigations. Sci. Total Environ. [Internet]. 2015; 511:501-508. doi: https://doi.org/f65dhw
Ronci L, Meccoli L, Lannilli V, Menegoni P, De Matthaeis E, Setini A. Comparison between active and passive biomonitoring strategies for the assessment of genotoxicity and metal bioaccumulation in Echinogammarus veneris (Crustacea: Amphipoda). Ital. J. Zool. [Internet]. 2016; 83(2):162-172, doi: https://doi.org/g8zvhs
Stará A, Kouba A, Velíšek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii). BioMed Res. Int. [Internet]. 2014; 2014:680131 doi: https://doi.org/gb84px
Li N, Zhao Y, Yang J. Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda). Arch. Environ. Con. Tox. [Internet]. 2007; 52:73-79. doi: https://doi.org/fdqvw8
Suvetha L, Ramesh M, Saravanan M. Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+–ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Pharmacol. [Internet]. 2010; 29(1):44-49. doi: https://doi.org/bqzhx2
Eken A, Endirlik BÜ. Bakir E. Histopathological effect of dimethoate on lung of rat and the protective role of Laurocerasus officinalis roem. (cherry laurel) fruit. J. Health Sci. [Internet]. 2017 [cited 12 Jun. 2024]; 26(3):211-215. Available in: https://goo.su/KT79qel
Koruma klor alcali San. Vet Tic.C.S. KORUMAGOR® 40 EC. [Internet]. 2023. Available in: https://goo.su/vAao2
Lidova J, Stara A, Kouba A, Velisek J. The effects of cypermethrin on oxidative stress and antioxidant biomarkers in marbled crayfish (Procambarus fallax f. virginalis). Neuro Endocrinol. Lett. [Internet]. 2016; 37(Suppl. 1):53-59. PMID: 28263531. Available in: https://goo.su/yRXud
Huang Y, Hong Y, Yin H, Yan G, Huang Q, Li Z, Huang Z. Imidacloprid induces locomotion impairment of the freshwater crayfish, Procambarus clarkii via neurotoxicity and oxidative stress in digestive system. Aquat Toxicol. [Internet] 2021; 238:105913. doi: https://doi.org/gn6mb4
Rossi AS, Fantón N, Michlig MP, Repetti MR, Cazenave J. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol. Indic. [Internet]. 2020; 113:106186. doi: https://doi.org/gwdz39
Serdar O. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environ. Sci. Pollut. Res. Int. [Internet]. 2019; 26(21):21905-21914. doi: https://doi.org/gwcp4w
Serdar O, Aydin R, Söylemez H. Effect of Beta–Cyfluthrin pesticide on Zebra mussel (Dressienna polymorpha), Int. J. Pure Appl. Sci. [Internet]. 2021; 7(3):462-471. doi: https://doi.org/g8zvht
Zhang C, Zhang Q, Pang Y, Song X, Zhou N, Wang J, He L, Lv J, Song Y, Cheng Y, Yang X. The protective effects of melatonin on oxidative damage and the immune system of the Chinese mitten crab (Eriocheir sinensis) exposed to deltamethrin. Sci Total Environ. [Internet]. 2019; 653:1426-1434. doi: https://doi.org/gzj4xb
Lin W, Luo H, Wu J, Liu X, Cao B, Hung TC, Liu Y, Chen Z, Yang P. Distinct vulnerability to oxidative stress determines the ammonia sensitivity of crayfish (Procambarus clarkii) at different developmental stages. Ecotoxicol Environ. Saf. [Internet]. 2022; 242:113895. doi: https://doi.org/gv67w8
Abd El–Atti M, Desouky MM, Mohamadien A, Said RM. Effects of titanium dioxide nanoparticles on red swamp crayfish, Procambarus clarkii: Bioaccumulation, oxidative stress and histopathological biomarkers. The Egypt. J. Aquat. Res. [Internet]. 2019; 45(1):11-18. doi: https://doi.org/g8zvhv
Cikcikoglu Yildirim N, Tanyol M, Yildirim N, Serdar O, Tatar S. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicol. Environ. Saf. [Internet]. 2018; 156:41-47. doi: https://doi.org/gv597x
Ferrari A, Venturino A, de D’Angelo AMP. Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic. Biochem. Physiol. [Internet]. 2007; 88(2):134-142. doi: https://doi.org/fd2ddt
Ghisi NC, Oliveira EC, Guiloski IC, Lima SB, Silva de Assis HC, Longhi SJ, Prioli AJ. Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: a field study in Neotropical region. Sci Total Environ. [Internet]. 2017; 609:1208-1218, doi: https://doi.org/gzmnbv
Nataraj B, Hemalatha D, Rangasamy B, Maharajan K, Ramesh M. Hepatic oxidative stress, genotoxicity and histopathological alteration in freshwater fish Labeo rohita exposed to organophosphorus pesticide profenofos. Biocatal Agric Biotechnol. [Internet]. 2017; 12:185-190. doi: https://doi.org/g8zvhw
Uçkun AA, Öz ÖB, Evaluation of the acute toxic effect of azoxystrobin on non–target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug Chem. Toxicol. [Internet]. 2021; 44(5):550-557. doi: https://doi.org/g8zvhx
Yang H, Jiang Y, Lu K, Xiong H, Zhang Y, Wei W. Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere [Internet]. 2021: 283:131227. doi: https://doi.org/gm3d3h
Gao X, Liu G, Song X, Teng X, Ji H, Peng L, Qiu Y, Guo D, Jiang S. Effect of maduramicin on crayfish (Procambius clarkii): Hematological parameters, oxidative stress, histopathological changes and stress response. Ecotoxicol. Environ. Saf. [Internet]. 2021; 211:111896. doi: https://doi.org/gs5dqx
