Análisis de minerales y metales pesados en otolitos de peces del río Tigris, Turquía
Resumen
Los niveles crecientes de contaminación plantean amenazas significativas para la pesca. Al analizar los diferentes componentes de las estructuras corporales de los peces, se pueden comprender mejor las interacciones que ocurren en respuesta a los cambios ambientales. Los otolitos son estructuras en los oídos internos de los peces y registran los cambios ambientales a los que están expuestos los estos a lo largo de su vida. Estudios recientes han demostrado que los otolitos de los peces brindan información sobre la acumulación de minerales y metales pesados en el ambiente. La acumulación de minerales y metales pesados en los otolitos de los peces puede ser un indicador importante para comprender las interacciones ambientales y, en última instancia, evaluar la sostenibilidad de los recursos pesqueros. En este estudio, se obtuvieron 62 muestras de Acanthobrama marmid, Alburnus mossulensis, Paracapoeta trutta, Capoeta umbla, Carassius gibelio, Chondrostoma regium, Cyprinion kais, Cyprinion macrostomum, Luciobarbus mystaceus y Planiliza abu de pescadores en el río Tigris. La presencia de Co, Cr, Cu, Fe, Mn, Ni, Pb y Zn se analizó mediante espectrometría de emisión óptica de plasma inductivamente acoplado (ICP-OES) en los otolitos. Los niveles promedio de residuos de metales pesados en los otolitos se determinaron como Co>Cr>Cu>Fe>Mn>Ni>Pb y Zn. Se encontró que los minerales Ca, K, Mg, Na y P eran estadísticamente significativos entre especies de peces (P<0,05). Según la prueba de comparación múltiple de Tukey HSD, los valores más altos de Ca, K y Na se encontraron en P. abu y de Mg en C. gibelio. Los datos se pueden utilizar como referencia para la evaluación de la acumulación de minerales y metales pesados en los otolitos de peces en términos de gestión de la pesca y protección ambiental, y se pueden comparar con los datos de estudios de diferentes pesquerías.
Descargas
Citas
Campana SE. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. [Internet]. 1999; 188:263-297. doi: https://doi.org/c2mc46
Campana SE, Thorrold SR. Otoliths, increment and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. [Internet]. 2001; 58(1):30–38. doi: https://doi.org/cs4ckn
Phelps QE, Edwards KR, Willis DW. Precision of five structures for estimating age of common carp. N. Am. J. Fish. Manag. [Internet]. 2007; 27(1): 103-105. doi: https://doi.org/cdfgj9
Jawad L, Mahé K. Fluctuating asymmetry in asteriscii otoliths of common carp (Cyprinus carpio) collected from three localities in Iraqi rivers linked to environmental factors. Fishes. [Internet]. 2022; 7(2):91. doi: https://doi.org/n96q
Tanabe T, Kayama S, Ogura M, Tanaka S. Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis. Fish. Sci. [Internet]. 2003; 69(4):731-737. doi: https://doi.org/b3vkbc
Morales-Nin B, Panfili J. Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Mar. Freshw. Res. [Internet]. 2005; 56(5):585-598. doi: https://doi.org/cdrvgk
Gao YW. Stable isotope analyses in otoliths of cod (Gadus morhua L., 1758): implication for long-term environmental changes in the Canadian Atlantic. Hamilton: McMaster University, 1997; p. 96. Available in: https://goo.su/B9030R
Ren D, Yonghua G, Qingling F. Enrichment of Pb, Hg and Cr in cultured carp otolith. Afr. J. Biotechnol. [Internet]. 2012; 11(8):1939-1947. doi: https://doi.org/n96r
Kalish JM. Otolith microchemistry: Validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. [internet]. 1989; 132(3):151-178. doi: https://doi.org/bjsq5s
Fowler AJ, Campana SE, Thorrold SR, Jones CM. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can. J. Fish. Aquat. Sci. [Internet]. 1995; 52(7):1431-1441. doi: https://doi.org/cwwjnh
Bath GE, Thorrold SR, Jones CM, Campana SE, Mclaren JM, Lam JWH. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 2000; 64(10):1705-1714. doi: https://doi.org/c28c5p
Kraus RT, Secor DH. Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. [Internet]. 2004; 302(1):85-106. doi: https://doi.org/dbxzsp
Thresher RE. Elemental composition of otoliths as a stock delineator in fishes. Fish. Res. [Internet]. 1999; 43(13):165-204. doi: https://doi.org/d763f2
Degens ET, Deuser WG, Haedrich RL. Molecular structure and composition of fish otoliths. Mar. Biol. [Internet]. 1969 [cited Jul. 22 2024]; 2:105-113. Available in: https://goo.su/U7XA6l
Mugiya Y, Hakomori T; Hatsutori K. Trace metal incorporation into otoliths and scales in the goldfish, Carassius auratus. Comp. Biochem. Physiol. C. Comp. Toxicol. [Internet]. 1991; 99(3):327-331. doi: https://doi.org/d2mhrt
Pannela G. Fish otoliths: daily growth layer and periodical patterns. Science [Internet]. 1971; 173(4002):1124–1127. doi: https://doi.org/dz22zx
Ranaldi MM, Gagnon MM. Trace metal incorporation in otoliths of pink snapper (Pagrus auratus) as an environmental monitor. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. [Internet]. 2010; 152(3):248–255. doi: https://doi.org/fmthmm
Secor DH, Ohta T, Nakayama K, Tanaka M. Use of otolith microanalysis to determine estuarine migrations of Japanese sea bass Lateolabrax japonicus distributed in Ariake Sea. Fish. Sci. [Internet]. 1998; 64(5):740–743. doi: https://doi.org/n96t
Limburg KE. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Prog. Ser. [Internet]. 1995 [cited Jul. 19 2024]; 119(1-3):25–35. Available in: https://goo.su/16Hk9Fj
Sadovy Y, Severin KP. Trace elements in biogenic aragonite: correlation of body growth rate and strontium levels in the otoliths of the white grunt, Haemulon plumier (Pisces: Haemulidae). Bull. Mar. Sci. 1992; 50:237-257. Available in: https://goo.su/VkFkdyx
Gillanders BM, Kingsford MJ. Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuar. Coast. Shelf. Sci. [Internet]. 2003; 57(5-6):1049–1064. doi: https://doi.org/b8x6n4
Pontual H, Bertignac M, Battaglia A, Bavouzet G, Moguedet P; Groison AL. A pilot tagging experiment on European hake (Merluccius merluccius): methodology and preliminary results. ICES J. Mar. Sci. [Internet]. 2003; 60(6):1318–1327. doi: https://doi.org/fs46hs
Elsdon TS, Gillanders BM. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci: 2002; 59(11):1796–1808. doi: https://doi.org/cfh5kp
Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW. Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar. Coast. Shelf Sci. [Internet]. 2003;56(5-6):1111–1123. doi: https://doi.org/c2w9b4
Martin GB, Thorrold SR. Temperature and salinity effectson magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar. Ecol. Prog. Ser. [Internet]. 2005; 293:223–232. doi: https://doi.org/bzvd7c
Vasconcelos RP, Reis-Santos P, Tanner S, Fonseca V, Latkoczy C, Günther D, Costa MJ, Cabral H. Discriminating estuarine nurseries for five fish species through otolith elemental fingerprints. Mar. Ecol. Prog. Ser. [Internet]. 2007; 350:117–126. doi: https://doi.org/frnrv6
Reis Santos P, Vasconcelos R, Ruano M, Latkoczy C, Günther D, Costa MJ, Cabral H. Interspecific variation of otolith chemistry in estuarine fish nurseries. J. Fish Biol. [Internet]. 2008; 72(10):2595–2614. doi: https://doi.org/c792cf
Thorrold SR, Jones CM, Campana SE. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonius undulatus). Limnol. Oceanogr. [Internet]. 1997; 42(1):102–111. doi: https://doi.org/frnnsm
Rooker JR, Secor DH, DeMetrio G, Schloesser R, Block BA, Neilson J.D. Natal homing and connectivity in Atlantic bluefin tuna populations. Sci. [Internet]. 2008; 322(5902):742–744. doi: https://doi.org/c966md
Moreau G, Barbeau C, Frenette JJ, Saint-Onge J, Simoneau M. Zinc, manganese, and strontium in opercula and scales of brook trout (Salvelinus fontinalis) as indicators of lake acidification. Can. J. Fish. Aquat. Sci. [Internet]. 1983; 40(10):1685-1691. doi: https://doi.org/cj694q
Gauldie R W, Fournier DA, Dunlop DE, Coote G. Atomic emission and proton microprobe studies of the ion con- tent of otoliths of chinook salmon aimed at recovering the temperature life history of individuals. Comp. Bio- chem. Physiol. A, Physiol. [Internet]. 1986; 84(4):507-515. doi: https://doi.org/b8vxr9
Evans DW, Dodoo DK and Hanson DJ. Trace elements con- centrations in fish livers: Implications of variations with fish size in pollution monitoring. Mar. Pollut. Bull. [Inter- net]. 1993; 26(6):329–334. doi: https://doi.org/bzdr3x
Rashed MN. Monitoring of environmental heavy metals in fish from Nasser Lake. Environ. Int. [Internet]. 2001; 27(1):27–33. doi: https://doi.org/fwnrjd
Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakak- ou V. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece), Environm. Int. [Internet]. 2004; 30(3):357–362. doi: https://doi.org/dvq4pz
Guhathakurta H, Kaviraj A. Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mul- let (Liza parsia) in some brackish water ponds of Sun- derban, India. 2000. Mar. Pollut. Bull. [Internet]. 2000; 40(11):914-920. doi: https://doi.org/b9tmgh
Kargin F. Metal concentrations in tissues of the fresh- water fish Capoeta barroisi from the Seyhan River (Tur- key). Bull. Environ. Contam. Toxicol. [Internet]. 1998; 60(5):822–828. doi: https://doi.org/crmct4
Canli M, Atli G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Medi- terranean fish species. Environ. Pollut. [Internet]. 2003; 121(1):129–136. doi: https://doi.org/c6vkwh
Fernandes C, Fontaínhas-Fernandes A, Peixoto F, Salga- do MA. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal. Ec- otoxicol. Environ. Saf. [Internet]. 2007; 66(3):426–431. doi: https://doi.org/cs99z5
Karadede-Akin H, Ünlü E. Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ. Monit. Assess. [Internet]. 2007; 131:323-337. doi: https://doi.org/bkcvvx
Herrera-Reveles AT, Lemus M, Marín B, Prin JL. Trace metal incorporation in otoliths of a territorial coral reef fish (Abudefduf saxatilis) as an environmental monitor- ing tool. In: E3S Web of Conferences. Proceedings of the 16th Intrenational Conference on Heavy Metals in the Environment. EDP Sci. J. [Internet]. 2013; 1:34007. doi: https://doi.org/n983
Sturgeon RE. Current practice and recent developments in analytical methodology for trace metal analysis of soils, plants and water. Commun. Soil Sci. Plant Anal. [Internet]. 2000; 31(11-14):1479-1512. doi: https://doi.org/b2sf35
IBM Corp. Released. IBM SPSS Statistics for Windows, Version 23.0. Armonk: IBM Corp.2021 [cited Jul 22 2024] Available in: https://n9.cl/rc9b9
Sümbüloğlu K, Sümbüloğlu V. Biyoistatistik. hatipoğlu basım ve yayım san. Tic. Ltd. Şti. Ankara, 2002.
Gao Y, Feng Q, Ren D, Qiao L, Li S. The relationship be- tween trace elements in fish otolith of wild carp and hydrochemical conditions. Fish Physiol. Biochem. [Inter- net]. 2010; 36(1):91-100. doi: https://doi.org/b3wkr6
Fengqin D, Shengrong L, Lina Y, Wenjie L, Jing L, Wen- yan S. Relationship of phosphorus content in carp oto- liths with that in ambient water in Xiaoxi Port of the Tai- hu Lake, East China. Afr. J. Biotechnol. [Internet]. 2011; 10(54):11206-11213. doi: https://doi.org/n987
Milton DA, Tenakanai CD, Chenery SR. Can the move- ments of barramundi in the Fly River region, Papua New Guinea be traced in their otoliths?. Estuar. Coast. Shelf Sci. [Internet]. 2000; 50(6):855–868. doi: https://doi.org/ bpgq2m
Tong SL, Ho CY, Pang FY. Monitoring of Ba, Mn, Cu and Ni during estuarine mixing. Anal. Sci. [Internet]. 1997; 13(Supplement):373-378. doi: https://doi.org/c4nnkm
Elsdon TS, Gillanders BM. Temporal variability in stron- tium, calcium, barium, and manganese in estuaries: im- plications for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar. Coast. Shelf Sci. [Internet]. 2006; 66(1-2):147-156. doi: https://doi.org/bdg7nj
