El efecto del dimetoato sobre el estrés oxidativo y las respuestas antioxidantes de Pontastacus leptodactylus

Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés oxidativo, antioxidante, biomarcadores

Resumen

El pesticida dimetoato (DMT) es uno de los productos químicos utilizados para proteger algunas áreas agrícolas de organismos nocivos. Los residuos de DMT liberados directa o indirectamente al medio ambiente causan graves problemas en la naturaleza. Los residuos de DMT mezclados con el medio acuático afectan negativamente a los organismos acuáticos y este efecto se transmite a los humanos a través de la cadena alimentaria. En este estudio, se investigaron las respuestas al estrés oxidativo inducidas por el pesticida DMT en Pontastacus leptodactylus. Para ello, se investigaron el estrés oxidativo y los parámetros antioxidantes Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión (GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión peroxidasa (GPX) causados por el pesticida dimetoato (DMT) en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L-1 a las 24 y 96 horas. Los resultados se determinaron utilizando kits de ELISA. No se observaron diferencias significativas en los niveles de GSH y las actividades de SOD en comparación con el control. Se observaron diferencias estadísticamente significativas entre disminuciones en las actividades de CAT y GPx y aumentos en los niveles de TBARS. Se utilizó ANOVA unidireccional del programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis bioquímicos. Como resultado, se determinó que el DMT provocó la formación de estrés oxidativo en P. leptodactylus y provocó cambios en las actividades enzimáticas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aydin AN, Serdar O, Aydin R. Determination of lethal concentrations (LC50) of Cyfluthrin, Dimethoate insecticides on Gammarus pulex (L. 1758). Acta Aquat. Turc. [Internet]. 2022; 18(3):384-392. doi: https://doi.org/g8zvhm

Reberski JL, Terzić J, Maurice LD, Lapworth DJ. Emerging organic contaminants in karst groundwater: A global level assessment. J. Hydrol. [Internet]. 2022; 604:127242. doi: https://doi.org/gtz8rt

Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar SM. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere [Internet]. 2022; 287(Part 2):132216. doi: https://doi.org/gmr9zm

Halbach K, Möder M, Schrader S, Liebmann L, Schäfer RB, Schneeweiss A, Schreiner VC, Vormeier P, Weisner O, Liess M, Reemtsma T. Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Res. [Internet]. 2021; 203:117535. doi: https://doi.org/gmvkj2

Brunelle LD, Huang IJ, Angeles LF, Running LS, Sirotkin HI, McElroy AE, Aga DS. Comprehensive assessment of chemical residues in surface and wastewater using passive sampling, chemical, biological, and fish behavioral assays. Sci. Tot. Env. [Internet] 2022; 828:154176. doi: https://doi.org/gvwwbs

Nicolopoulou–Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in Agriculture. Front. Public Health [Internet]. 2016; 4:148. doi: https://doi.org/gf54vv

Choudri BS, Charabi Y, Ahmed M. Pesticides and herbicides. Water Environ. Res. [Internet]. 2018; 90:1663-1678. doi: https://doi.org/g8zvhn

Yüksel F, Aydin R, Serdar O, Pala A. Examining the biochemical effect of malathion pesticide on Gammarus pulex (L.,1798). Fresenius Environ. Bull. [Internet]. 2020 [cited 12 Jun. 2024]; 29(10):9490-9497. Available in: https://goo.su/mkzUI

Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward, Chemosphere [Internet]. 2022; 307(Part. 3):136018. doi: https://doi.org/gzhm4h

Odun NA, Serdar O. Zebra Midye (Dreissena polymorpha)’de Malathionun Akut Toksisitesi (LC50)’nin Belirlenmesi [Determination of Acute Toxicity (LC50) of Malathion in Zebra Mussel (Dreissena polymorpha)]. J. Anatol. Environ. Anim. Sci. [Internet]. 2022; 7(3):269-273. Turkish. doi: https://doi.org/g8zvhp

Karataş M, editor. Research methods in fish biology. 2nd ed Ankara (Türkiye): Nobel Publishing; 2005. 512 p.

Bhattacharjee R, Sil PC. The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytother. Res. [Internet]. 2006; 20(7):595-601. doi: https://doi.org/fpsh87

Batista MTO, Rodrigues Junior E. Feijó–Oliveira M, Ribeiro AC, Rodrigues E, Suda CNK, Vani GS. Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin. Rev. Ambient. Água. [Internet]. 2014; 9(4):621-631. doi: https://doi.org/g8zvhq

Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pestic. Biochem. Physiol. [Internet]. 2011; 101(1):1-5. doi: https://doi.org/dgx2bc

Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ. Toxicol. Pharmacol. [Internet]. 2012; 33(2):334-343. doi: https://doi.org/fxx463

Uçar A, Parlak V, Özgeriş FB, Çilingir Yeltekin A, Alak G, Atamanalp M. Determination of Fipronil toxicity by different biomarkers in gill and liver tissue of rainbow trout (Oncorhynchus mykiss). In Vitro Cell. Dev. Biol. Anim. [Internet]. 2020; 56(7):543-549. doi: https://doi.org/g8zvhr

Lebrun JD, Geffard O, Urien N, François A, Uher E, Fechner LC. Seasonal variability and inter–species comparison of metal bioaccumulation in caged gammarids under urban diffuse contamination gradient: implications for biomonitoring investigations. Sci. Total Environ. [Internet]. 2015; 511:501-508. doi: https://doi.org/f65dhw

Ronci L, Meccoli L, Lannilli V, Menegoni P, De Matthaeis E, Setini A. Comparison between active and passive biomonitoring strategies for the assessment of genotoxicity and metal bioaccumulation in Echinogammarus veneris (Crustacea: Amphipoda). Ital. J. Zool. [Internet]. 2016; 83(2):162-172, doi: https://doi.org/g8zvhs

Stará A, Kouba A, Velíšek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii). BioMed Res. Int. [Internet]. 2014; 2014:680131 doi: https://doi.org/gb84px

Li N, Zhao Y, Yang J. Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda). Arch. Environ. Con. Tox. [Internet]. 2007; 52:73-79. doi: https://doi.org/fdqvw8

Suvetha L, Ramesh M, Saravanan M. Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+–ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Pharmacol. [Internet]. 2010; 29(1):44-49. doi: https://doi.org/bqzhx2

Eken A, Endirlik BÜ. Bakir E. Histopathological effect of dimethoate on lung of rat and the protective role of Laurocerasus officinalis roem. (cherry laurel) fruit. J. Health Sci. [Internet]. 2017 [cited 12 Jun. 2024]; 26(3):211-215. Available in: https://goo.su/KT79qel

Koruma klor alcali San. Vet Tic.C.S. KORUMAGOR® 40 EC. [Internet]. 2023. Available in: https://goo.su/vAao2

Lidova J, Stara A, Kouba A, Velisek J. The effects of cypermethrin on oxidative stress and antioxidant biomarkers in marbled crayfish (Procambarus fallax f. virginalis). Neuro Endocrinol. Lett. [Internet]. 2016; 37(Suppl. 1):53-59. PMID: 28263531. Available in: https://goo.su/yRXud

Huang Y, Hong Y, Yin H, Yan G, Huang Q, Li Z, Huang Z. Imidacloprid induces locomotion impairment of the freshwater crayfish, Procambarus clarkii via neurotoxicity and oxidative stress in digestive system. Aquat Toxicol. [Internet] 2021; 238:105913. doi: https://doi.org/gn6mb4

Rossi AS, Fantón N, Michlig MP, Repetti MR, Cazenave J. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol. Indic. [Internet]. 2020; 113:106186. doi: https://doi.org/gwdz39

Serdar O. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environ. Sci. Pollut. Res. Int. [Internet]. 2019; 26(21):21905-21914. doi: https://doi.org/gwcp4w

Serdar O, Aydin R, Söylemez H. Effect of Beta–Cyfluthrin pesticide on Zebra mussel (Dressienna polymorpha), Int. J. Pure Appl. Sci. [Internet]. 2021; 7(3):462-471. doi: https://doi.org/g8zvht

Zhang C, Zhang Q, Pang Y, Song X, Zhou N, Wang J, He L, Lv J, Song Y, Cheng Y, Yang X. The protective effects of melatonin on oxidative damage and the immune system of the Chinese mitten crab (Eriocheir sinensis) exposed to deltamethrin. Sci Total Environ. [Internet]. 2019; 653:1426-1434. doi: https://doi.org/gzj4xb

Lin W, Luo H, Wu J, Liu X, Cao B, Hung TC, Liu Y, Chen Z, Yang P. Distinct vulnerability to oxidative stress determines the ammonia sensitivity of crayfish (Procambarus clarkii) at different developmental stages. Ecotoxicol Environ. Saf. [Internet]. 2022; 242:113895. doi: https://doi.org/gv67w8

Abd El–Atti M, Desouky MM, Mohamadien A, Said RM. Effects of titanium dioxide nanoparticles on red swamp crayfish, Procambarus clarkii: Bioaccumulation, oxidative stress and histopathological biomarkers. The Egypt. J. Aquat. Res. [Internet]. 2019; 45(1):11-18. doi: https://doi.org/g8zvhv

Cikcikoglu Yildirim N, Tanyol M, Yildirim N, Serdar O, Tatar S. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicol. Environ. Saf. [Internet]. 2018; 156:41-47. doi: https://doi.org/gv597x

Ferrari A, Venturino A, de D’Angelo AMP. Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic. Biochem. Physiol. [Internet]. 2007; 88(2):134-142. doi: https://doi.org/fd2ddt

Ghisi NC, Oliveira EC, Guiloski IC, Lima SB, Silva de Assis HC, Longhi SJ, Prioli AJ. Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: a field study in Neotropical region. Sci Total Environ. [Internet]. 2017; 609:1208-1218, doi: https://doi.org/gzmnbv

Nataraj B, Hemalatha D, Rangasamy B, Maharajan K, Ramesh M. Hepatic oxidative stress, genotoxicity and histopathological alteration in freshwater fish Labeo rohita exposed to organophosphorus pesticide profenofos. Biocatal Agric Biotechnol. [Internet]. 2017; 12:185-190. doi: https://doi.org/g8zvhw

Uçkun AA, Öz ÖB, Evaluation of the acute toxic effect of azoxystrobin on non–target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug Chem. Toxicol. [Internet]. 2021; 44(5):550-557. doi: https://doi.org/g8zvhx

Yang H, Jiang Y, Lu K, Xiong H, Zhang Y, Wei W. Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere [Internet]. 2021: 283:131227. doi: https://doi.org/gm3d3h

Gao X, Liu G, Song X, Teng X, Ji H, Peng L, Qiu Y, Guo D, Jiang S. Effect of maduramicin on crayfish (Procambius clarkii): Hematological parameters, oxidative stress, histopathological changes and stress response. Ecotoxicol. Environ. Saf. [Internet]. 2021; 211:111896. doi: https://doi.org/gs5dqx

Publicado
2025-01-18
Cómo citar
1.
Aydın AN, Bulut H, Serdar O. El efecto del dimetoato sobre el estrés oxidativo y las respuestas antioxidantes de Pontastacus leptodactylus. Rev. Cient. FCV-LUZ [Internet]. 18 de enero de 2025 [citado 30 de julio de 2025];35(1):7. Disponible en: https://produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/43301
Sección
Medicina Veterinaria