Diferenciação geográfica e diversidade genética do milheto pérola argelino avaliada por microsatélites

  • Abderrezzak Kirouani Laboratory of Nutrition, Biodiversity and Environment, Agronomy Department, Faculty of Sciences, University of Médéa, Algeria. Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000 https://orcid.org/0000-0001-8386-5218
  • Elyes Babay National Gene Bank of Tunisia (BNG), Tunis, Tunisia Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia https://orcid.org/0000-0002-0712-9216
  • Redha Ouldkiar Laboratory of Nutrition, Biodiversity and Environment, Agronomy Department, Faculty of Sciences, University of Médéa, Algeria. Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000. https://orcid.org/0000-0002-9629-8897
  • Badreddine Belhadi Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000. Département des sciences et techniques, Faculté de technologie, Université Amar Télidji, Laghouat, Algeria. https://orcid.org/0009-0008-2637-8868
  • Rachid Souilah Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000. Département de physique, Ecole Normale Supérieure Taleb Abderrahmane, ENSL, B.P 4033. Laghouat, Algeria https://orcid.org/0009-0008-0271-7749
  • Leila Boukhalfoun Laboratory of Nutrition, Biodiversity and Environment, Agronomy Department, Faculty of Sciences, University of Médéa, Algeria. https://orcid.org/0000-0002-4145-3669
  • Djaafar Djabali Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000. https://orcid.org/0009-0009-2483-6877
  • Boubekeur Nadjemi Laboratoire d’Etude et de Développement des Techniques d’Epuration et de Traitement des Eaux et Gestion Environnementale, Ecole Normale Supérieure de Kouba, Alger, Algeria. 16000. https://orcid.org/0009-0001-4134-9781
Palavras-chave: milheto pérola, marcador SSR, diversidade genética, diversidade regional, raças locais argelinas

Resumo

O milheto pérola, cereal tolerante à seca, é fundamental para a segurança alimentar em regiões áridas e semiáridas. Apesar de sua relevância global, a diversidade genética do milheto na Argélia permanece pouco explorada. Este estudo avaliou 22 genótipos de quatro zonas agroclimáticas saharianas utilizando 24 marcadores SSR. Foram detectados 87 alelos (média= 3,62 por loco), com valores de conteúdo de informação polimórfica (PIC) entre 0,043 e 0,815, indicando elevada variabilidade. A análise de variância molecular (AMOVA) mostrou maior variação dentro dos indivíduos do que entre eles. Genótipos de Tamanrasset e In Salah apresentaram maior diversidade que os de Oued Souf e Adrar, com alelos privados e raros refletindo o impacto do isolamento geográfico. As análises de agrupamento e de coordenadas principais (PCoA) organizaram os genótipos por origem geográfica, identificando cinco grupos principais. As populações do Níger e da Índia mostraram grande distância genética em relação às argelinas, tornando-se candidatas promissoras para o desenvolvimento de híbridos heteróticos. Esses resultados fornecem subsídios para ampliar a base genética em programas de melhoramento voltados à produtividade e à resiliência ao estresse do milheto pérola.

Downloads

Não há dados estatísticos.

Referências

Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Nepolean, T., Sankar, S. M., Singh, S. P., Meena, M. C., Singhal, T., & Srivastava, R. K. (2017). Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Frontiers in Plant Science, 8, 412. https://doi.org/10.3389/fpls.2017.00412
Bashir, E. M. A., Ali, A. M., Ali, A. M., Mohamed, E. T. I., Melchinger, A. E., Parzies, H. K., & Haussmann, B.I.G. (2015). Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genetic Resources and Crop Evolution, 62(4), 579-591. https://doi.org/10.1007/s10722-014-0183-5
Bhardwaj, R., Garg, T., Malik, E. A., Vikal, Y., Sohu, R. S., & Gupta, S. K. (2018). Genetic divergence studies in pearl millet [Pennisetum glaucum L. (R.) Br.] inbred lines. Indian Journal of Genetics and Plant Breeding, 78(3), 382-385. http://oar.icrisat.org/id/eprint/10854
Bougma, L. A., Ouédraogo, M. H., Ouoba, A., Zouré, A. A., Sawadogo, N., & Sawadogo, M. (2021). Genetic differentiation for gene diversity among pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers. International Journal of Agronomy, 2021(1). https://doi.org/10.1155/2021/6160903
Chandra, S., Singh, S. P., Kaswan, V., Chaudhary, S., Singh, A. M., Sankar, M., Meena, G., Choudhary, M., & Chellapilla, T. S. (2020). Morphological and molecular genetic diversity analysis of pearl millet (Pennisetum glaucum) maintainers and restorers. Indian Journal of Agricultural Sciences, 90(11), 2083-2089. https://doi.org/10.56093/ijas.v90i11.108564
Choudhary, M., Hossain, F., Muthusamy, V., Thirunavukkarasu, N., Saha, S., Pandey, N., Jha, S. K., & Gupta, H. S. (2016). Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. Journal of Plant Biochemistry and Biotechnology, 25(1), 12-20. https://doi.org/10.1007/s13562-015-0300-3
Deevi, C. K., Swamikannu, N., Pingali, P. R., & Gumma, M. K. (2024). Current Trends and Future Prospects in Global Production, Utilization, and Trade of Pearl Millet. In V. A. Tonapi., N. Thirunavukkarasu., S. Gupta., P. I. Gangashetty., & O. Yadav (Eds.), Pearl Millet in the 21st Century. Springer Nature, Singapore. https://doi.org/10.1007/978-981-99-5890-0
Lemgharbi, M., Belhadi, B., Souilah, R., Djabali, D., & Nadjemi, B. (2023). Biodiversity of pearl millet (Pennisetum glaucum [L.] R. Br.) in southern Algeria (Tidikelt region). Biodiversity Journal, 14(3), 491-504. https://doi.org/10.31396/Biodiv.Jour.2023.14.3.491.504
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Fulton, T. M., Chunwongse, J., & Tanksley, S.D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter, 13(3), 207-209. https://doi.org/10.1007/BF02670897
Govindaraj, M., Rai, K. N., Kanatti, A., Upadhyaya, H. D., Shivade, H., & Rao, A. S. (2020). Exploring the genetic variability and diversity of pearl millet core-collection germplasm for grain nutritional traits improvement. Scientific Reports, 10, 21177. https://doi.org/10.1038/s41598-020-77818-0
Gunguniya, D. F., Kumar, S., Patel, M. P., Sakure, A. A., Patel, R., Kumar, D., & Khandelwal, V. (2023). Morpho-biochemical characterization and molecular marker based genetic diversity of pearl millet (Pennisetum glaucum (L.) R. Br.). PeerJ, 11, e15403. https://doi.org/10.7717/peerj.15403
Gupta, S. K., Nepolean, T., Shaikh, C. G., Rai, K., Hash, C. T., Das, R. R., & Rathore, A. (2018). Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). The Crop Journal, 6(3), 271-281. https://doi.org/10.1016/j.cj.2017.09.008
Kirouani, A., Boukhalfoun, L., Ouldkiar, R., & Bouzerzour, H. (2023). Analysis of the effect of GE interaction on the grain yield and its related traits in rainfed Algerian durum wheat (Triticum turgidum L. var. durum) grown in contrasting environments. Revista Facultad Nacional de Agronomia Medellin, 76(2), 10297-10308. https://doi.org/10.15446/rfnam.v76n2.102517
Kirouani, A., Henkrar, F., Udupa, S. M., Boukhalfoun, L., & Bouzerzour, H. (2018). Genetic diversity in Algerian durum wheat varieties (Triticum turgidum L. var. durum) using microsatellite markers. Bioscience Journal, 34(6), 1575-1583. https://doi.org/10.14393/BJ-v34n6a2018-42332
Kuang, Z., Xiao, C., Ilyas, M. K., Ibrar, D., Khan, S., Guo, L., Wang, W., Wang, B., Huang, H., Li, Y., Li, Y., Zheng, J., Saleem, S., Tahir, A., Ghafoor, A., & Chen, H. (2022). Use of SSR Markers for the Exploration of Genetic Diversity and DNA Finger-Printing in Early-Maturing Upland Cotton (Gossypium hirsutum L.) for Future Breeding Program. Agronomy, 12(7), 1513. https://doi.org/10.3390/agronomy12071513
Kumar, S., Hash, C. T., Singh, G., Basava, R. K., & Srivastava, R. K. (2020). Identification of polymorphic SSR markers in elite genotypes of pearl millet and diversity analysis. Ecological Genetics and Genomics, 14, 100051. https://doi.org/10.1016/j.egg.2019.100051
Liu, K., & Muse, S. V. (2005). PowerMaker: An integrated analysis environment for genetic maker analysis. Bioinformatics, 21(9), 2128-2129. https://doi.org/10.1093/bioinformatics/bti282
Makwana, K., Tiwari, S., Tripathi, M. K., Sharma, A. K., Pandya, R. K., & Singh, A. K. (2021). Morphological characterization and DNA finger printing of pearl millet (Pennisetum Glaucum (L.) germplasms. Range Management and Agroforestry, 42(2), 205-221.
Manning, K., Pelling, R., Higham, T., Schwenniger, J.-L., & Fuller, D. Q. (2011). 4500-year-old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. Journal of Archaeological Science, 38(2), 312-322. https://doi.org/10.1016/j.jas.2010.09.007
Mariac, C., Luong, V., Kapran, I., Mamadou, A., Sagnard, F., Deu, M., Chantereau, J., Gerard, B., Ndjeunga, J., Bezançon, G., Pham, J. L., & Vigouroux, Y. (2006). Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theoretical and Applied Genetics,114(1), 49-58. https://doi.org/10.1007/s00122-006-0409-9
Nepolean, T., Gupta, S.K., Dwivedi, S. L., Bhattacharjee, R., Rai, K. N., & Hash, C. T. (2012). Genetic diversity in maintainer and restorer lines of pearl millet. Crop Science, 52(6), 2555-2563. https://doi.org/10.2135/cropsci2011.11.0597
Oumar, I., Mariac, C., Pham, J.-L., & Vigouroux, Y. (2008). Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br.) as revealed by microsatellite loci. Theoretical and Applied Genetics, 117, 489-497. https://doi.org/10.1007/s00122-008-0793-4
Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
Ramya, A. R., Ahamed, M. L., Satyavathi, C. T., Rathore, A., Katiyar, P., Bhasker Raj, A. G., Kumar, S., Gupta, R., Mahendrakar, M. D., Yadav, R. S., & Srivastava, R. K. (2018). Towards defining heterotic gene pools in pearl millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 8, 1-11. https://doi.org/10.3389/fpls.2017.01934
Rani, R., Khandelwal, V., Jhunjhadia, S., Ambawat, S., Bhanwariya, S., Singh, A., & Kumar, V. (2024). Quantifying genetic diversity based on morphological and molecular analysis in pearl millet [Pennisetum glaucum (L.) R. Br.] inbred lines. Annals of Arid Zone, 63(3), 105-110. https://epubs.icar.org.in/index.php/AAZ/article/view/151562
Rhoné, B., Defrance, D., Berthouly-Salazar, C., Mariac, C., Cubry, P., Couderc, M., Dequincey, A., Assoumane, A., Kane, N. A., Sultan, B., Barnaud, A., & Vigouroux, Y. (2020). Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nature Communications, 11, 5274. https://doi.org/10.1038/s41467-020-19066-4
Sangwan, S., Yashveer, S., Kumar, R., Hemender, Sharma, S., & Redhu, N. (2019). Multi trait analysis reveals substantial diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] inbred lines. Journal of Experimental Biology and Agricultural Sciences, 7(4), 358-375. https://doi.org/10.18006/2019.7(4).358.375
Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl millet: A climate-resilient nutricereal for mitigating hidden hunger and providing nutritional security. Frontiers in Plant Science, 12, 659938. https://doi.org/10.3389/fpls.2021.659938
Sawadogo, N., Nanema, R. K., Bationo/Kando, P., Traore, R. E., Nebie, B., Tiama, D., Sawadogo, M., & Zongo, J. D. (2015). Évaluation de la diversité génétique des sorghos à grains sucrés (Sorghum bicolor (L.) Moench) du Nord du Burkina Faso. Journal of Applied Biosciences, 84(1), 7654. https://doi.org/10.4314/jab.v84i1.3
Serba, D. D., & Yadav, R. S. (2016). Genomic tools in pearl millet breeding for drought tolerance: Status and prospects. Frontiers in Plant Science, 7, 1724. https://doi.org/10.3389/fpls.2016.01724
Shinde, H., Dudhate, A., Anand, L., Tsugama, D., Gupta, S. K., Liu, S., & Takano, T. (2020). Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. South African Journal of Botany, 132, 395-402. https://doi.org/10.1016/j.sajb.2020.06.011
Singh, A. K., Rana, M. K., Singh, S., Kumar, S., Durgesh, K., & Arya, L. (2013). Assessment of genetic diversity among pearl millet [Pennisetum glaucum (L.) R Br.] cultivars using SSR markers. Range Management and Agroforestry, 34(1), 77-81. https://publications.rmsi.in/index.php/rma/article/view/459/426
Singh, S., & Gupta, S. K. (2019). Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE, 14(5), e0207463. https://doi.org/10.1371/JOURNAL.PONE.0207463
Stich, B., Haussmann, B. I. G., Pasam, R., Bhosale, S., Hash, C. T., Melchinger, A. E., & Parzies, H. K. (2010). Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from west and central Africa and their relation to geographical and environmental parameters. BMC Plant Biology, 10, 216. https://doi.org/10.1186/1471-2229-10-216
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. https://doi.org/10.1093/molbev/msm092
Triki, T., Bennani, L., Boussora, F., Tlahig, S., Ben Ali, S., Gasmi, A., Yahia, H., Belhouchette, K., Loumerem, M., & Guasmi, F. (2023). Characterization and trait association analysis of 27 pearl millet landraces in Southern Tunisia. Agronomy, 13(8), 2128. https://doi.org/10.3390/agronomy13082128
Vom Brocke, K., Christinck, A., Weltzien, R. E., Presterl, T., & Geiger, H. H. (2003). Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Science, 43(5), 1680-1689. https://doi.org/10.2135/cropsci2003.1680
Yadav, O. P., Gupta, S. K., Govindaraj, M., Sharma, R., Varshney, R. K., Srivastava, R. K., Rathore, A., & Mahala, R. S. (2021). Genetic gains in pearl millet in India: Insights into historic breeding strategies and future perspective. Frontiers in Plant Science, 12, 645038. https://doi.org/10.3389/fpls.2021.645038
Publicado
2025-12-08
Como Citar
Kirouani, A., Babay, E., Ouldkiar, R., Belhadi, B., Souilah, R., Boukhalfoun, L., Djabali, D., & Nadjemi, B. (2025). Diferenciação geográfica e diversidade genética do milheto pérola argelino avaliada por microsatélites. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 42(4), e254256. Obtido de https://produccioncientifica.luz.edu.ve/index.php/agronomia/article/view/44866
Secção
Produção Vegetal