Effect of solar irradiation, substrate type and environment on the growth and ornamental quality of Euphorbia cotinifolia plants

Keywords: anthocyanins, biometric proportionality, Dickson quality, robustness index, growth rate

Abstract

Euphorbia cotinifolia L. is an ornamental plant of economic importance due to the red-purple color of its foliage. The objective of this research was to evaluate the effect of solar irradiation, substrate type and environment on the growth and ornamental quality of E. cotinifolia plants propagated from semi-woody cuttings. Two experiments were conducted from June 2022 to March 2023, in Tetela de Ocampo and Huitzilan de Serdan, Puebla, Mexico. Each experiment had 20 treatments. The experiments had a 2x5x2 factorial design; factor 1 was growth environments, its levels: temperate climate (STC), and subtropical (SHC). Factor 2 was solar irradiation, its levels: 80, 240, 347, 394, and 571 µmol.m-2.s-1. Factor 3 was the type of substrate, its levels: river sand with peat moss (AT), and forest soil with perlite (SP). At 243 days after rooting, the highest values were: 32.98 cm for terminal shoot growth, 4.80 mm.day-1 in growth rate, 1.76 in robustness index, 1.32 in Dickson's index. The maximum anthocyanin concentration was 4.94 mg.g-1 in red-purple leaves. The highest values and the red-purple color of the foliage (quality indicator) occurred when the plants were grown on AT substrate, at 571 µmol.m-2.s-1 in SHC climate. It is concluded that in tropical climate, plants develop with better quality; river sand with peat moss is recommended as substrate, and exposure to high light intensities.

Downloads

Download data is not yet available.

References

Asif, M., Ali, A., Ahmed, K., Khan, Q., Irshad, A., Khalid, M., Talpur, A., Ali-Wahocho, S., & Ahmed-Wahocho N. (2024). Evaluation of propagation of Bougainvillea under different plantation conditions. Journal of Applied Research in Plant Sciences, 5(2), 249–258. https://doi.org/10.38211/joarps.2024.05.262
Chandler, S., & Brugliera, F. (2011). Genetic modification in floriculture. Biotechnology Letters, 33(2), 207–214. https://doi.org/10.1007/s10529-010-0424-4
Charcape, J. M., Correa, V. A., & Chunga, J. C. (2015). Especies arbóreas presentes en la Región Piura. INDES Revista de Investigación para el Desarrollo Sustentable, 3(1), 60–85. https://doi.org/10.25127/indes.20153.135
de Oliveira, J. H., & Sartori-Paoli, A. A. (2016). Morfologia e desenvolvimento da plântula de Acalypha gracilis (Spreng.) Müll. Arg., Euphorbia cotinifolia L. e Jatropha gossypiifolia L. (Euphorbiaceae). Arnaldoa, 23 (2), 443 – 460. http://doi.org/10.22497/arnaldoa.232.23204
Desrosiers, S. L., Collin, A., & Bélanger, N. (2024). Factors affecting early red oak (Quercus rubra L.) regeneration near its northern distribution limit in Quebec. Frontiers in Forest and Global Change, 7, 1451161. https://doi.org/10.3389/ffgc.2024.1451161
Dos Santos, F. K. F., Dos Santos, E. O. V., Veiga-Junior, V. F., & Teixeira-Costa, B. E. (2024). Hibiscus rosa-sinensis. (A. K. Gupta, V. Kumar, B. Naik, & P. Mishra, Eds.; Academic Press, pp. 127–156). Edible Flowers. https://doi.org/10.1016/B978-0-443-13769-3.00008-X
El Mokni, R. (2023). Non-native shrubby species of Euphorbia (Euphorbiaceae) in Tunisia. Flora Mediterranea, 33, 17–29. https://doi.org/10.7320/FlMedit33.017
Enaru, B., Dretcanu, G., Pop, T. D., Stanila, A., & Diaconeasa, Z. (2021). Anthocyanins: factors affecting their stability and degradation. Antioxidants, 10, 1967. https://doi.org/10.3390/antiox10121967
Frajman, B., & Geltman, D. (2021). Evolutionary origin and systematic position of Euphorbia normannii (Euphorbiaceae), an intersectional hybrid and local endemic of the Stavropol Heights (Northern Caucasus, Russia). Plant Systematics and Evolution, 307, 20. https://doi.org/10.1007/s00606-021-01741-8
González-Lázaro, M., Sáenz de Urturi, I., Marín-San Román, S., Murillo-Peña, R., Pérez-Álvarez, E. P., & Garde-Cerdán, T. (2024). Effects of foliar applications of methyl jasmonate alone or with urea on anthocyanins content during grape ripening. Scientia Horticulturae, 338(1), 113782. https://doi.org/10.1016/j.scienta.2024.113782
Gupta, R., & Gupta, J. (2019). Investigation of antimicrobial activity of Euphorbia hirta leaves. International Journal of Life Science and Pharma Research, 9(3), 32–37. http://dx.doi.org/10.22376/ijpbs/lpr.2019.9.3.P32-37
Haase, D. L. (2008). Understanding forest seedling quality: measurements and interpretation. Tree Planters’ Notes 52(2), 24–30. https://rngr.net/publications/tpn/52-2/understanding-forest-seedling-quality-measurements-and-interpretation-1
Hao, G. Y., Wang, A. Y., Sack, L., Goldstein, G., & Cao, K. F. (2013). Is hemiepiphytism an adaptation to high irradiance? Testing seedling responses to light levels and drought in hemiepiphytic and non-hemiepiphytic Ficus. Physiologia Plantarum, 148, 74–86. http://dx.doi.org/10.1111/J.1399-3054.2012.01694.X
Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90(4), 485–488. https://doi.org/10.1093/aob/mcf214
Jayalakshmi, B., Raveesha, K. A., & Amruthesh, K. N. (2021). Isolation and characterization of bioactive compounds from Euphorbia cotinifolia. Future Journal of Pharmaceutical Sciences, 7(9), 1–9. https://doi.org/10.1186/s43094-020-00160-9
Lin, K. H., Wu, C. W., and Chang, Y. S. (2019). Applying Dickson quality index, chlorophyll fluorescence, and leaf area index for assessing plant quality of Pentas lanceolata. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 169–176. https://doi.org/10.15835/nbha47111312
Lozoya-Gloria, E., Cuéllar-González, F., & Ochoa-Alejo, N. (2023). Anthocyanin metabolic engineering of Euphorbia pulcherrima: advances and perspectives. Frontiers in Plant Science, 14, 1176701. https://doi.org/10.3389/fpls.2023.1176701
Nascimento, L. F., Blank, A. F., Sá Filho, J. C., Pereira, K. L., Nizio, D. A., Arrigoni-Blank, M. F., Oliveira, A. M., & Souza, V. T. (2020). Morphoagronomic characterization of Lantana camara L. germplasm. Bioscience Journal, 36(4), 1211–1222. http://dx.doi.org/10.14393/BJ-v36n4a2020-48080
Noda, N. (2018). Recent advances in the research and development of blue flowers. Breeding Science, 68(1), 79–87. https://doi.org/10.1270/jsbbs.17132
Paradiso, R., & Proietti, S. (2022). Light‐quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED system. Journal of Plant Growth Regulation, 41, 742–780. https://doi.org/10.1007/s00344-021-10337-y
Pomar, F., & Barceló, R. A. (2007). Are red leaves photosynthetically active? Biologia Plantarum, 51(4), 799–800. https://doi.org/10.1007/s10535-007-0164-z
Rosati, C., & Simoneau, P. (2006). Metabolie engineering of flower color in ornamental plants. Journal of Crop Improvement, 18(1-2), 301–324. https://doi.org/10.1300/J411v18n01_01
Taghavi, T., Patel, H., & Rafie, R. (2022). Anthocyanin extraction method and sample preparation affect anthocyanin yield of strawberries. Natural Product Communications, 17(5), 1–7. https://doi.org/10.1177/1934578X221099970
Villalón-Mendoza, H., Ramos-Reyes, J. C., Vega-López, J. A., Marino, B., Muños-Palomino, M. A., & Garza-Ocañas, F. (2016). Indicadores de calidad de la planta de Quercus canby Trel. (encino) en vivero forestal. Revista Latinoamericana de Recursos Naturales, 12(1), 46–52. https://revista.itson.edu.mx/index.php/rlrn/article/view/250
Zhao, D., & Tao, J. (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science, 6, 261. https://doi.org/10.3389/ fpls.2015.00261
Published
2025-07-07
How to Cite
Aguilar-Luna, J., & Hernández-Vargas, L. (2025). Effect of solar irradiation, substrate type and environment on the growth and ornamental quality of Euphorbia cotinifolia plants. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 42(3), e254234. Retrieved from https://produccioncientifica.luz.edu.ve/index.php/agronomia/article/view/44097
Section
Crop Production