Graph Theory to Optimize the Coverage Network for Public Educational Institutions in the Southern Province of Sumapaz (Colombia)

Keywords: Algorithm, Mathematics, Optimization, Educational Management

Abstract

This article determines the fastest travel routes from the University of Cundinamarca (Fusagasugá campus) to public educational institutions in the southern province of Sumapaz (Colombia) to optimize the planning of extracurricular activities. Graph theory is applied, modeling the region's road network as a weighted graph, with the weight of the edges being the travel times between municipalities, population centers, and villages, obtained from Google Maps. Dijkstra's algorithm is used to calculate the minimum cost paths from the origin node to the most distant destinations, structuring the analysis into four strategic routes, which allows the identification of optimal routes and the quantification of minimum travel times. As a result, the fastest travel time to institutions in Cumaca is 59 minutes, to Bateas is 68 minutes, to Cabrera is 146 minutes, and to the village of Andes is 150 minutes, thus confirming that graph theory, applying Dijkstra's algorithm, is an effective and reliable method for route optimization in complex rural contexts, providing a quantitative basis for logistics planning and efficient resource allocation.

Downloads

Download data is not yet available.

Author Biographies

Eva Patricia Vásquez Gómez, University of Cundinamarca

Professor, University of Cundinamarca, Colombia.

Jorge Enrique Quevedo Buitrago, University of Cundinamarca

Professor, University of Cundinamarca, Colombia.

Diego Orlando Méndez Pineda , University of Cundinamarca

Professor, University of Cundinamarca, Colombia.

Ana Esperanza Merchán Hernández , University of Cundinamarca

Professor, University of Cundinamarca, Colombia.

Wilson Daniel Gordillo Ochoa , University of Cundinamarca

Professor, University of Cundinamarca, Colombia.

References

Allauca, J. E. (2023). Aplicación de la teoría de grafos en la optimización de redes de transporte. Revista CINTE Volumen 1, Núm. 1, septiembre - octubre (2023). ISSN – 2960-8449. https://cienciainteligente.com/index.php/CIN/article/view/10

Cámara de Comercio de Bogotá (2010). Plan de Competitividad para la Provincia del Sumapaz. ISBN: 978-958-688-298-9. https://bit.ly/46ZHArN

Chen, R. (2022). Dijkstra’s shortest path algorithm and its application on bus routing. En Proceedings of the 2022 8th International Conference on Economics, Business and Management Research (ICEBMR 2022) (pp. 370-374). Atlantis Press. https://doi.org/10.2991/aebmr.k.220502.058

Fitriansyah, A., Parwati, N., Wardhani, D., & Kustian, N. (2019). Dijkstra’s algorithm to find shortest path of tourist destination in Bali. Journal of Physics: Conference Series, 1338(1), Article 012044. https://doi.org/10.1088/1742-6596/1338/1/012044

Javaid, A. (2013). Understanding Dijkstra’s Algorithm. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2340905

Khan, M. A. (2020). A comprehensive study of Dijkstra's algorithm. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4559304

Lusiani, A., Sartika, E., Binarto, A., Habinuddin, E., & Azis, I. (2021). Determination of the fastest path on logistics distribution by using Dijkstra algorithm. En Proceedings of the 5th Annual Engineering Research Seminar (AER-S) (pp. 235-241). Atlantis Press. https://doi.org/10.2991/aer.k.211106.039

Méndez Martínez, L., Rodríguez Colina, E., y Medina Ramírez., C. (2014). Toma de Decisiones Basadas en el Algoritmo de Dijkstra. Redes de Ingeniería, 4(2), 35–42. https://doi.org/10.14483/2248762X.6357

Nurhasanah, F. Y., Gata, W., Riana, D., Jamil, M., & Saputra, S. F. (2021). Shortest Path Finding Using Dijkstra’s Algorithm. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 9(1), 89–102. https://doi.org/10.33558/piksel.v9i1.2365

Quevedo Buitrago, J. E., Vásquez Gómez, E.P., Merchán Hernández, A. E. & Méndez Pineda, D. O. (2024). Aplicación de robótica educativa en niños de grados cero, primero y segundo de primaria en escuelas rurales de Fusagasugá. Desafíos Contemporáneos en Investigación (pp. 306 – 319). EIDEC. https://doi.org/10.34893/r8546-1235-1309-u

Rosen, K. H. (2004). Matemática discreta y sus aplicaciones. McGraw-Hill.

Sari, I. P., Fahroza, M. F., Mufit, M. I., & Qathrunada, I. F. (2021). Implementation of Dijkstra's algorithm to determine the shortest route in a city. Journal of Computer Science, Information Technology and Telecommunication Engineering (JCoSITTE) Vol. 2, No. 1, March 2021, pp. 134-138. https://doi.org/10.30596/jcositte.v2i1.6503

Saxena, A., V, A., Lalitha, G., Khangar, V., Kumar, P., Tyagi, L., & Almusawi, M. (2024). Expanding horizons: Graph theory’s multifaceted applications. E3S Web of Conferences, 507, Article 01015. https://doi.org/10.1051/e3sconf/202450701015

Vásquez Gómez, E. P., Quevedo Buitrago, J. E., Merchán Hernández, A. E., & Méndez Pineda, D. O. (2025). Robótica educativa para o desenvolvimento do pensamento computacional: um estudo numa escola rural da Colômbia. Revista Portuguesa De Educação, 38(2), e25021. https://doi.org/10.21814/rpe.36792
Published
2026-01-11
How to Cite
Vásquez Gómez, E. P., Quevedo Buitrago, J. E., Méndez Pineda , D. O., Merchán Hernández , A. E., & Gordillo Ochoa , W. D. (2026). Graph Theory to Optimize the Coverage Network for Public Educational Institutions in the Southern Province of Sumapaz (Colombia). Journal of the University of Zulia , 17(48), 298-319. https://doi.org/10.5281/zenodo.18210299