The ongoing panzootic of avian Influenza A (H5N1) and its potential pandemic threat.
La panzootia actual de influenza aviar A (H5N1) y su potencial amenaza pandémica.
Resumen
El virus de la influenza es uno de los patógenos más importantes, causante de infecciones respiratorias, y el agente humano más frecuentemente asociado con epidemias y pandemias. El registro epidemiológico de la influenza sugiere que las futuras pandemias causadas por este virus son inevitables, aunque su momento, origen y gravedad siguen siendo inciertos. Esta revisión se centra en la panzootia actual de la influenza aviar A (H5N1), que ac- tualmente se propaga por gran parte del mundo. La panzootia actual del virus de la influenza A (H5N1), del clado 2.3.4.4b, se ha extendido de manera dramática a nivel mundial y está generando gran preocupación. El virus ya ha cruzado las barreras entre especies, provocando infecciones en múltiples hospedadores mamíferos y causando casos humanos con distintos grados de gravedad. Aunque aún no se ha producido una transmisión sostenida de persona a persona, preocupa la creciente frecuencia de eventos de salto interespecie y la aparición de genotipos con mutaciones asociadas a la adaptación en mamíferos. En esta revisión, evaluamos el potencial de esta panzootia para evolucionar hacia una pandemia y examinamos las medidas críticas necesarias para la preparación y la prevención, siguiendo un enfoque de Una Sola Salud.
Descargas
Citas
Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe. 2010; 7:440-51. https://doi.org/10.1016/j.chom.2010.05.009.
Butt SL, Nooruzzaman M, Covaleda LM, Diel DG. Hot topic: Influenza A H5N1 virus exhibits a broad host range, including dairy cows. JDS Commun 2024; 5: S13- S19. https://doi.org/10.3168/jdsc.2024-0638.
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers 2018; 4: 3. https://doi.org/10.1038/s41572-018-0002-y.
Nakatsu S, Murakami S, Shindo K, Horimoto T, Sagara H, Noda T, Kawaoka Y. Influenza C and D Viruses Package Eight Organized Ribonucleoprotein Complexes. J Virol 2018; 92: e02084-17. https://doi.org/10.1128/JVI.02084-17.
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses- A Comparative Review on Influenza C and D. Pathogens 2021; 10: 1583. https://doi.org/10.3390/pathogens10121583.
Steel J, Lowen AC. Influenza A virus reassortment. Curr Top Microbiol Immunol, 2014; 385: 377-401. https://doi.org/10.1007/82_2014_395.
Raza MA, Ashraf MA, Amjad MN, Din GU, Shen B, Hu Y. The peculiar characteristics and advancement in diagnostic methodologies of influenza A virus. Front Microbiol, 2025; 15: 1435384. https://doi.org/10.3389/fmicb.2024.1435384.
Karakus U, Mena I, Kottur J, El Zahed SS, Seoane R, Yildiz S, et al. H19 influenza A virus exhibits species-specific MHC class II receptor usage. Cell Host Microbe. 2024; 32: 1089-1102. e10. https://doi.org/10.1016/j.chom.2024.05.018
Zhao C, Pu J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses. 2022; 14: 2141. https://doi.org/10.3390/v14102141.
De Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Conserved Expression and Functionality of Furin be- tween Chickens and Ducks as an Activating Protease of Highly Pathogenic Avian Influenza Virus Hemagglutinins. Microbiol Spectr, 2023; 11: e0460222. https://doi.org/10.1128/spectrum.04602-22.
Lycett SJ, Duchatel F, Digard P. A brief history of bird flu. Philos Trans R Soc Lond B Biol Sci. 2019; 374(1775): 20180257. https://doi.org/10.1098/rstb.2018.0257.
Centers for Disease Control and Prevention. Past Reported Global Human Cases with Highly Pathogenic Avian Influenza A (H5N1) (HPAI H5N1) by Country, 1997-2025. 2025.Accessed on September 25, 2025. https://www.cdc.gov/bird-flu/php/avian-flu-summary/chart-epi-curve- ah5n1.html.
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis, 2023; 55: 102638. https://doi.org/10.1016/j.tmaid.2023.102638.
Elsmo EJ, Wünschmann A, Beckmen KB, Broughton-Neiswanger LE, Buckles EL, Ellis J, et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg Infect Dis. 2023; 29: 2451-2460. https://doi.org/10.3201/eid2912.230464.
Youk S, Torchetti MK, Lantz K, Lenoch JB, Killian ML, Leyson C, et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021-April 2022. Virology. 2023; 587: 109860. https://doi.org/10.1016/j.virol.2023.109860.
Zeng J, Du F, Xiao L, Sun H, Lu L, Lei W, et al. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J Virol, 2024; 98: e0140123. https://doi.org/10.1128/jvi.01401-23.
Peacock TP, Moncla L, Dudas G, VanInsberghe D, Sukhova K, Lloyd-Smith JO, et al. The global H5N1 influenza panzootic in mammals. Nature. 2025; 637(8045): 304-313. https://doi.org/10.1038/s41586-024-08054-z.
Bruno A, de Mora D, Olmedo M, Garces J, Marzal A, García-Bereguiain MA. Highly pathogenic avian influenza A (H5N1) virus outbreaks in South America in 2022–2024: a comprehensive review of an ongoing panzootic. Virology. 2025; 610: 110602. https://doi.org/10.1016/j.virol.2025.110602.
Ruiz-Saenz J, Martinez-Gutierrez M, Pujol FH. Multiple introductions of highly pathogenic avian influenza H5N1 clade 2.3.4.4b into South America. Travel Med Infect Dis. 2023; 53: 102591. https://doi.org/10.1016/j.tmaid.2023.102591.
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses. 2023; 15:980. https://doi.org/10.3390/v15040980.
Nguyen TQ, Hutter CR, Markin A, Thomas M, Lantz K, Killian ML, et al. Emergence and interstate spread of highly pathogenic avian influenza A(H5N1) in dairy cattle in the United States. Science. 2025; 388(6745): eadq0900. https://doi.org/10.1126/science.adq0900.23.
European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, et al. Avian influenza overview December 2024-March 2025. EFSA J. 2025; 23:e9352. https://doi.org/10.2903/j.efsa.2025.9352.
Zhang G, Shi Y, Ge H, Wang Y, Lu L, Jiang S, Wang Q. Genomic signatures and host adaptation of H5N1 clade 2.3.4.4b: A call for global surveillance and multi-target antiviral strategies. Curr Res Microb Sci. 2025; 8: 100377. https://doi.org/10.1016/j.crmicr.2025.100377.
Krammer F, Hermann E, Rasmussen AL. Highly pathogenic avian influenza H5N1: history, current situation, and outlook. J Virol, 2025; 99: e0220924. https://doi.org/10.1128/jvi.02209-24.
Sidney J, Kim A-R, de Vries RD, Peters B, Meade PS, Krammer F, et al. Targets of influenza human T-cell response are mostly conserved in H5N1. mBio. 2025; 16: e0347924. https://doi.org/10.1128/mbio.03479-24.
Gu C, Maemura T, Guan L, Eisfeld AJ, Biswas A, Kiso M, et al. A human isolate of bovine H5N1 is transmissible and lethal in animal models. Nature. 2024; 636(8043): 711-8. https://doi.org/10.1038/s41586-024-08254-7.
Mahmoud SH, Khattab MS, Yehia N, Zanaty A, Arafa AES, Khalil AA. Pathogenicity of Highly Pathogenic Avian Influenza A/H5Nx Viruses in Avian and Murine Models. Pathogens. 2025; 14: 149. https://doi.org/10.3390/pathogens14020149.
Alkie TN, Embury-Hyatt C, Signore AV, Baldwin F, Hisanaga T, Xu W, et al. Comparative pathogenicity of three A(H5N1) clade 2.3.4.4b HPAI viruses in blue-winged teal and transmission to domestic poultry. mSphere. 2025; 10: e0002125. https://doi.org/10.1128/msphere.00021-25.
Capelastegui F, Goldhill DH. H5N1 2.3.4.4b: a review of mammalian adaptations and risk of pandemic emergence. J Gen Virol. 2025; 106: 002109. https://doi.org/10.1099/jgv.0.002109.
Xie Z, Yang J, Jiao W, Li X, Iqbal M, Liao M, Dai M. Clade 2.3.4.4b highly pathogenic avian influenza H5N1 viruses: knowns, unknowns, and challenges. J Virol. 2025; 99: e0042425. https://doi.org/10.1128/jvi.00424-25.
Good MR, Suja D, Guthmiller JJ. The sweet side of H5N1 influenza virus infection. PLoS Pathog. 2025; 21: e1012847. https://doi.org/10.1371/journal.ppat.1012847.
Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol. 2019; 17: 67–81. https://doi.org/10.1038/s41579-018-0115-z.
Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature; 2012; 486(7403): 420-428. https://doi.org/10.1038/nature10831.
Lin TH, Zhu X, Wang S, Zhang D, McBride R, Yu W, et al. A single mutation in bovine influenza H5N1 hemagglutinin switches specificity to human receptors. Science. 2024; 386(6726): 1128-34. https://doi.org/10.1126/science.adt0180.
Peacock TP, Sheppard CM, Lister MG, Staller E, Frise R, Swann OC, et al. Mammalian ANP32A and ANP32B Proteins Drive Differential Polymerase Adaptations in Avian Influenza Virus. J Virol. 2023; 97: e0021323. https://doi.org/10.1128/jvi.00213-23.
Garretson TA, Liu J, Li SH, Scher G, Santos JJS, Hogan G, et al. Immune history shapes human antibody responses to H5N1 influenza viruses. Nat Med. 2025; 31:1454-8. https://doi.org/10.1038/s41591-025-03599-6.
Kaplan BS, Torchetti MK, Lager KM, Webby RJ, Vincent AL. Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs. Influenza Other Respir Viruses. 2017; 11: 464-470. https://doi.org/10.1111/irv.12463.
Kwon T, Trujillo JD, Carossino M, Machkovech HM, Cool K, Lyoo EL, et al. Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs. Emerg Microbes Infect. 2025; 14:2509742. https://doi.org/10.1080/22221751.2025.2509742.
Krammer F, Schultz-Cherry S. We need to keep an eye on avian influenza. Nat Rev Immunol. 2023; 23: 267-8. https://doi.org/10.1038/s41577-023-00868-8.
WHO Global Influenza Programme & World Health Organization. Pandemic influenza preparedness and response: a WHO guidance document. 2009. World Health Organization. Accessed on May 25, 2025. https://iris.who.int/handle/10665/44123.
World Health Organization. Intergovernmental Negotiating Body to draft and negotiate a WHO convention, agreement or other international instrument on pandemic prevention, preparedness and response. 2025. Accessed on May 5, 2025. https://apps.who.int/gb/ebwha/pdf_files/WHA78/A78_10-en.pdf.
Qualls N, Levitt A, Kanade N, Wright-Jegede N, Dopson S, Biggerstaff M, et al. Community Mitigation Guidelines to Prevent Pandemic Influenza – United States, 2017. MMWR. 2017; 66: 1-34. https://www.cdc.gov/mmwr/volumes/66/rr/rr6601a1.htm.
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med. 2021; 53: 737-749. https://doi.org/10.1038/s12276-021-00603-0.
Ziegler T, Mamahit A, Cox NJ. 65 tears of influenza surveillance by a World Health Organization-coordinated global network. Influenza Other Respir Viruses. 2018; 12:558-565. https://doi.org/10.1111/irv.12570.
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother. 2024; 20: 2347019. https://doi.org/10.1080/21645515.2024.2347019.
Centers for Disease Control and Prevention. Highly Pathogenic Avian Influenza A(H5N1) Virus: Interim Recommendations for Prevention, Monitoring, and Public Health Investigations. 2024. Accessed on May 4, 2025. https://www.cdc.gov/bird-flu/prevention/hpai-interim-recommendations.html.
Cohen J. Bird Shots. Science. 2023; 380(6640): 24-7. https://doi.org/10.1126/science.adi1004.
Lewis N, Beer M. Stop H5N1 influenza in US cattle now. Science. 2024; 385(6705):123.2024. https://doi.org/10.1126/science.adr5866.
Medina-Armenteros Y, Cajado-Carvalho D, das Neves Oliveira R, Apetito Akamatsu M, Lee Ho P. Recent Occurrence, Diversity, and Candidate Vaccine Virus Selection for Pandemic H5N1: Alert Is in the Air. Vaccines. 2024; 12: 1044. https://doi.org/10.3390/vaccines12091044.
Jones JC, Yen HL, Adams P, Armstrong K, Govorkova EA. Influenza antivirals and their role in pandemic preparedness. Anti-viral Res. 2023; 210: 105499. https://doi.org/10.1016/j.antiviral.2022.105499.
Khurana S, King LR, Manischewitz J, Posadas O, Mishra AK, Liu D, et al. Licensed H5N1 vaccines generate cross-neutralizing antibodies against highly pathogenic H5N1 clade 2.3.4.4b influenza virus. Nat Med. 2024; 30: 2771-2776. https://doi.org/10.1038/s41591-024-03189-y.
Souza CK, Santos JJS, Boggiatto P, Sterle H, Arruda B, Palmer MV, et al. H5 influenza virus mRNA-lipid nanoparticle (LNP) vaccination elicits adaptive immune responses in Holstein calves. 2025. bioRxiv preprint. https://doi.org/10.1101/2025.05.01.651548.
Koopmans MPG, Barton Behravesh C, Cunningham AA, Adisasmito WB, Almuhairi S, Bilivogui P, et al. The panzootic spread of highly pathogenic avian influenza H5N1 sublineage 2.3.4.4b: a critical appraisal of One Health preparedness and prevention. Lancet Infect Dis. 2024; 24: e774-e781. https://doi.org/10.1016/S1473-3099(24)00438-9.















