Detección de MicroARN Exosómicos en la leche de diferentes especies animales e investigación de sus cambios dependientes de la temperatura

Palabras clave: Leche de burra, exosomas lácteos, miARN, miARN–15a, miARN–34a

Resumen

Este estudio tuvo como objetivo investigar la presencia de microARN específicos (miARN; miARN–15a, miARN–34a, miARN– 223 y miARN–29b) en la leche de vacas, búfalas, ovejas, cabras y burros que están asociados con el cáncer, el sistema inmunitario y el desarrollo de osteoblastos en humanos. Además, se investigó el efecto del tratamiento térmico sobre estos miARN. Las leches se trataron térmicamente a 63°C durante 30 min (P1), 90°C durante 10 min (P2) y 135°C durante 1–3 segundos. Se detectó la presencia de miARN–15a, miARN–34a, miARN–223 y miARN–29b en la leche de vacas, búfalas, ovejas, cabras y burros. Se observó que estos miARN respondieron de manera diferente al calor.

Descargas

La descarga de datos todavía no está disponible.

Citas

Massey LK. Dairy food consumption, blood pressure and stroke. J.Nutr. [Internet]. 2001; 131(7):1875–1878. doi: https://doi.org/pv4t

Jaiswal S, Ramesh K, Kapusetti G, Ray AK, Ray B, Misra N. Mangiferin as chain transfer agent: effect on the molecular weight of poly (methyl methacrylate) and polystyrene. Poym. Bull. [Internet]. 2015; 72:1407–1416. doi: https://doi.org/f7jkcw

Fox PF. Milk Proteins: General and Historical Aspects. In: Fox PF, McSweeney PLH, editors. Advanced Dairy Chemistry – 1 Proteins. 3rd ed. [Internet]. New York: Springer Verlag Publish; 2003. p. 1–48. doi: https://doi.org/d35qbw

Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. [Internet]. 2003; 77(1):257–265. doi: https://doi.org/gp6t35

Galley JD, Besner GE.The therapeutic potential of breast milk–derived extracellular vesicles. Nutrients [Internet]. 2020; 12(3):745. doi: https://doi.org/gmkggd

Sanwlani R, Fonseka P, Chitti SV, Mathivanan S. Milk–Derived extracellular vesicles in inter–organismal, cross–species communication and drug delivery. Proteomes [Internet]. 2020; 8(2):11. doi: https://doi.org/gmr4xc

Shen J, Stass SA, Jiang F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. [Internet]. 2013; 329(2):125–136. doi: https://doi.org/f4jztb

Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. Fundam. Mol. Mech. Mutagen. [Internet]. 2011; 717(1–2):85–90. doi: https://doi.org/dm7kvj

Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics [Internet]. 2015; 5(10):1122–1143. doi: https://doi.org/f7xfdn

Melnik BC, Schmitz G. MicroRNAs: Milk’s epigenetic regulators. Best. Pract. Res. Clin. Endocrinol. Metab. [Internet]. 2017; 31(4):427–442. doi: https://doi.org/gcttkq

Alsaweed M, Hepworth AR, Lefèvre C, Hartmann PE, Geddes DT, Hassiotou F. Human milk microRNA and total RNA differ depending on milk fractionation. J. Cell. Biochem. [Internet]. 2015; 116(10):2397–2407. doi: https://doi.org/f7ntxq

Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep. [Internet]. 2016; 6:20680. doi: https://doi.org/f78gq4

Do DN, Dudemaine PL, Li R, Ibeagha–Awemu EM. Co–expression network and pathway analyses reveal important modules of miRNAs regulating milk yield and component traits. Int. J. Mol. Sci. [Internet]. 2017; 18(7):1560. doi: https://doi.org/ghkrxq

Benmoussa A, Ly S, Shan ST, Laugier J, Boilard E, Gilbert C, Provost P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J. Extracell. Vesicles [Internet]. 2017; 6(1):1401897. doi: https://doi.org/pv4v

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome–mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. [Internet]. 2007: 9(6):654–659. doi: https://doi.org/d5df4s

Hüttenhofer A, Mayer G. Circulating miRNAs as biomarkers of kidney disease. Clin. Kidney J. [Internet]. 2017; 10(1):27–29. doi: https://doi.org/pv4w

Thind A, Wilson C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J. Extracell Vesicles [Internet]. 2016; 5(1):31292. doi: https://doi.org/ghv97d

Iannaccone M, Cosenza G, Pauciullo A, Garofalo F, Proroga YT, Capuano F, Capparelli, R. Milk microRNA–146a as a potential biomarker in bovine tuberculosis. J. Dairy Res. [Internet]. 2018; 85(2):178–180. doi: https://doi.org/gdkdxv

Taibi F, Metzinger–Le Meuth V, Massy ZA, Metzinger L. miR–223: an inflammatory oncomiR enters the cardiovascular field. Biochim. Biophys. Acta, Mol. Basis Dis. [Internet]. 2014; 1842(7):1001–1009. doi: https://doi.org/f55nd8

Rossi M, PitariMR, Amodio N, Di Martino MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T, Caraglia ELM, Ferrarini M, Giordano A, Tagliaferri P, Tassone, P. miR–29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma–related bone disease. J. Cell. Physiol. [Internet]. 2013; 228(7):1506– 1515. doi: https://doi.org/f5b552

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M. Wojcik S, Aqeilan R, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu C, Kipps TJ, Negrini M, Croce CM. miR–15 and miR–16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. [Internet]. 2005; 102(39):13944–13949. doi: https://doi.org/crtvkp

He L, He X, Lim PL, Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe S, Cleary M , Hannon GJ. A microRNA component of the p53 tumor suppressor network. Nature [Internet]. 2007; 447:1130–1134. doi: https://doi.org/c2j33r

Dumpler J, Kulozik U. Heat stability of concentrated skim milk as a function of heating time and temperature on a laboratory scale – Improved methodology and kinetic relationship. Int. Dairy J. [Internet]. 2015; 49:111–117. doi: https://doi.org/pv4x

Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk–derived microvesicles carring mRNAs and microRNAs. Biochem. Biophys. Res. Commun. [Internet]. 2010; 396(2):528–533. doi: https://doi.org/d5pq4f

Lai YC, Fujikawa T, Ando T, Kitahara G, Koiwa M, Kubota C, Miura N. Rapid communication: MiR–92a as a house keeping gene for analysis of bovine mastitis–related microRNA in milk. J. Anim. Sci. [Internet]. 2017; 95(6):2732–2735. doi: https://doi.org/gbpjxs

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2–∆∆C Method. Methods [Internet]. 2001; 25(4):402–408. doi: https://doi.org/c689hx

Benmoussa A, Provost P. Milk MicroRNAs in health and disease. Compr. Rev. Food Sci. Food Saf. [Internet]. 2019; 18(3):703–722. doi: https://doi.org/gmr4w2

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z,Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross– kingdom regulation by microRNA. Cell. Res. [Internet]. 2012; 22(1):107–126. doi: https://doi.org/cwd

Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. [Internet]. 2013; 31(11):965–967. doi: https://doi.org/gjvprm

Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco–2 cells and rat small intestinal IEC–6 cells 1, 2, 3. J. Nutr. [Internet]. 2015; 145(10):2201–2206. doi: https://doi.org/f7tjzc

Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary microRNAs. Can. J. Physiol. Pharmacol. [Internet]. 2015; 93(12):1097–1102. doi: https://doi.org/f72dkk

Zempleni J, Aguilar–Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications in infants. J. Nutr. [Internet]. 2017; 147(1):3–10. doi: https://doi.org/ggpq8f

Howard KM, Kusuma RJ, Baier SR, Friemel T, Markham L, Vanamala J. Zempleni J. Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. J. Agric. Food Chem. [Internet]. 2015; 63(2):588–592. doi: https://doi.org/f6zvjq

Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ. microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. J. Allergy Clin. Immunol. [Internet]. 2016; 137(6):1893–1895. doi: https://doi.org/gmr4xx

Golan–Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and biological function of milk–derived miRNAs. Mol. Nutr. Food Res. [Internet]. 2017; 61(10):1700009 doi: https://doi.org/gmr4tv

Kleinjan M, van Herwijnen MJ, Libregts SF, van Neerven RJ, Feitsma AL, Wauben MH. Regular Industrial Processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles. J. Nutr. [Internet]. 2021; 151(6):1416– 1425. doi: https://doi.org/gmr4wp

Zhang Y, Xu Q, Hou J, Huang G, Zhao S, Zheng N, Wang J. Loss of bioactive microRNAs in cow’s milk by ultra–high– temperature treatment but not by pasteurization treatment. J. Sci. Food Agric. [Internet]. 2022; 102(7):2676–2685. doi: https://doi.org/pv43

Publicado
2025-07-19
Cómo citar
1.
Celık A, Vural A, Yıldırım IH. Detección de MicroARN Exosómicos en la leche de diferentes especies animales e investigación de sus cambios dependientes de la temperatura. Rev. Cient. FCV-LUZ [Internet]. 19 de julio de 2025 [citado 18 de agosto de 2025];35(3):7. Disponible en: https://produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/44126
Sección
Medicina Veterinaria