Efecto antimicrobial del cloruro de Dialquilcarbamoilo (DACC) en heridas quirúrgicas infectadas. Estudio experimental
Resumen
Con el objeto de Evaluar los efectos antimicrobianos e histopatológicos del apósito de cloruro de dialquilcarbamoilo (DACC) en heridas quirúrgicas infectadas con diversos patógenos. En el Grupo 1 (control), después de la incisión en la línea media en la región interescapular, las heridas se cerraron con suturas no absorbibles en condiciones estériles y se aplicó nitrofurazona externamente a las heridas quirúrgicas. Las heridas fueron cubiertas con gasa esterilizada. En los grupos 2, 3, 4 y 5 se realizó una incisión en las ratas y las heridas se contaminaron con Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus y Candida albicans, respectivamente. Las heridas quirúrgicas contaminadas se cubrieron con un apósito DACC justo después de la incisión. Los apósitos se cambiaron cada 3 días. En todos los grupos se observó claramente que DACC mostró un efecto antimicrobiano contra varios microorganismos en las infecciones del sitio quirúrgico. En el segundo grupo, el espesor epitelial de las muestras disminuyó en comparación con el grupo de control, pero no fue estadísticamente significativo. También en este grupo la fibrosis fue estadísticamente menor que en otros grupos. El apósito cubierto por DACC es un material biomecánico estratégico que previene infecciones y se puede utilizar de forma segura contra riesgos de infección del sitio quirúrgico. No tiene ningún efecto secundario conocido debido a usos externos. La hidrofobicidad del DACC permite una alta capacidad de unión de microorganismos.
Descargas
Citas
European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals, 2022- 2023. ECDC Surveillance Report. [Internet]. 2024; 192 p. doi: https://doi.org/pt8c
European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections in Europe 2010-2011. ECDC Surveillance Report. [Internet]. 2013; 192 p. doi https://doi.org/pt8d
Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. [Internet]. 2020; 88:26–40. doi: https://doi.org/gh5j6c
Edis Z, Bloukh SH, Sara HA, Azelee NIW. Antimicrobial biomaterial on sutures, bandages and face masks with potential for infection control. Polymers [Internet]. 2022; 14(10):1932. doi: https://doi.org/pt8f
Yudaev P, Mezhuev Y, Chistyakov E. Nanoparticle–containing wound dressing: antimicrobial and healing effects. Gels [Internet]. 2022; 8(6):329. doi: https://doi.org/pt8g
Morgner B, Husmark J, Arvidsson A, Wiegand C. Effect of a DACC–coated dressing on keratinocytes and fibroblasts in wound healing using an in vitro scratch model. J. Mater. Sci. Mater. Med. [Internet]. 2022; 33:22. doi: https://doi.org/pt8h
Broekema FI, van Oeveren W, Zuidema J, Visscher SH, Bos RRM. In vitro analysis of polyurethane foam as a topical hemostatic agent. J. Mater. Sci. Mater. Med. [Internet]. 2011; 22:1081–1086. doi: https://doi.org/cz6zr8
Tomizawa Y. Clinical benefits and risk analysis of topical hemostats: a review. J. Artif. Organs. [Internet]. 2005; 8:137–142. doi: https://doi.org/cdg9d2
Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules [Internet]. 2018; 23(9):2392. doi: https://doi.org/gfg58j
Mosti G, Magliaro A, Mattaliano V, Picerni P, Angelotti N. Comparative study of two antimicrobial dressings in infected leg ulcers: a pilot study. J. Wound Care [Internet]. 2015; 24(3):121–127. doi: https://doi.org/f65rwc
White RJ, Cutting K, Kingsley A. Topical antimicrobials in the control of wound bioburden. Ostomy Wound Manage. [Internet]. 2006; 52(8):26–58. PMID: 16896238. Available in: https://goo.su/4XoQi
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. [Internet]. 1999; 12(1):147–179. doi: https://doi.org/ghhktq
Chadwick P, Ousey K. Bacterial–binding dressings in the management of wound healing and infection prevention: a narrative review. J. Wound Care [Internet]. 2019; 28(6):370–382. doi: https://doi.org/gf3s85
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. [Internet]. 2010; 8:423–435. doi: https://doi.org/bt29sx
Matzinger P. Tolerance, danger, and the extended family.Annu. Rev. Immunol. [Internet]. 1994; 12:991–1045. doi: https://doi.org/dqp8gf
Rippon MG, Rogers AA, Ousey K. Antimicrobial stewardship strategies in wound care: evidence to support the use of dialkylcarbamoyl chloride (DACC) – coated wound dressings. J. Wound Care [Internet]. 2021; 30(4):284–296. doi: https://doi.org/gn73mk
Ljungh Å, Yanagisawa N, Wadström T. Using the principle of hydrophobic interaction to bind and remove wound bacteria. J. Wound Care [Internet]. 2006; 15(4):175–180. doi: https://doi.org/pvfx
Negut I, Grumezescu V, Grumezescu A. Treatment strategies for infected wounds. Molecules [Internet]. 2018; 23(9):2392. doi: https://doi.org/gfg58j
Mahoney AR, Safaee MM, Wuest WM, Furst AL. The silent pandemic: Emergent antibiotic resistances following the global response to SARS–CoV-2. Sci. [Internet]. 2021; 24(4):102304. doi: https://doi.org/gkm3pg
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. [Internet]. 2019; 10:539–563. doi: https://doi.org/ghfddk
Chen X, Liao B, Cheng L, Peng X, Xu X, Li Y, Hu T, Li J, Zhou X, Ren B. The microbial coinfection in COVID–19. Appl. Microbiol. Biotechnol. [Internet]. 2020; 104:7777–7785. doi: https://doi.org/ghr4jf
Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, Satta G, Cooke G, Holmes A. Bacterial and fungal co–infection in individuals with coronavirus: A rapid review to support COVID–19 antimicrobial prescribing. Clin. Infect. Dis. [Internet]. 2020; 71(9):2459–2468. doi: https://doi.org/ggx3b6
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public health risk factors, prevention and control. Pathogens [Internet]. 2021; 10(2):248. doi: https://doi.org/gjqj7g
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal colonization and infections—interactions with other human diseases. Pathogens [Internet]. 2022; 11(2):212. doi: https://doi.org/pvfz
Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb–Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMR Collaborative Group. Attributable deaths and disability– adjusted life–years caused by infections with antibiotic– resistant bacteria in the EU and the European Economic Area in 2015: A population–level modelling analysis. Lancet Infect. Dis. [Internet]. 2019; 19(1):56–66. doi: https://doi.org/gfgv4k
Atıcı A, Seçinti İE, Çelikkaya M E, Akçora B. The histopathological effect of tissue adhesive on urethra wound healing process: An experimental animal study. J. Pediatr. Urol. [Internet]. 2020; 16(6): 805.E1-805.E6. doi: https://doi.org/pvf2
York MK. Procedure 3.13.2, Quantitative cultures of wound tissues. In: Garcia LS, editor. Clinical Microbiology Procedures Handbook. 3rd ed. Washington (DC, USA): ASM Press; 2010. p. 3.13.2.1–3.13.2.10.
Jiang N, Rao F, Xiao J, Yang J, Wang W, Li Z, Haung R, Liu Z, Guo T. Evaluation of different surgical dressings in reducing postoperative surgical site ınfection of a closed wound. A network meta–analysis. Int. J. Surg. [Internet]. 2020; 82:24–29. doi: https://doi.org/gskx23
Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microb. Infect. 2000; 2(4):391–400. doi: https://doi.org/bgbhz3
Bacakova L, Filova E, Parizek M, RumL T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. [Internet]. 2011; 29(6):739–767. doi: https://doi.org/dn5w38
Totty JP, Bua N, Smith GE, Harwood AE, Carradice D, Wallace T, Chetter IC. Dialkylcarbamoyl chloride (DACC)–coated dressings in the management and prevention of wound infection: a systematic review. J. Wound Care [Internet]. 2017; 26(3):107–114. doi: https://doi.org/gm8t9q
Stanirowski PJ, Bizon M, Cendrowski K, Sawicki W. Randomized controlled trial evaluating dialkylcarbamoyl chloride impregnated dressings for the prevention of surgical site infections in adult women undergoing cesarean section. Surg. Infect. 2016; [Internet]. 17(4):427–435. doi: https://doi.org/f8xdp7
Geroult S, PhillipsRO, Demangel RO. Adhesion of the ulcerative pathogen Mycobacterium ulcerans to DACC – coated dressing. J. Wound Care [Internet]. 2014; 23(8):417-424. doi: https://doi.org/f6d29f
Husmark J, Morgner B, Susilo YB, Wiegand C. Antimicrobial effects of bacterial binding to a dialkylcarbamoyl chloride– coated wound dressing: an in vitro study. J. Wound Care [Internet]. 2022; 31(7):560-570. doi: https://doi.org/pvf7
Stanirowski PJ, Kociszewska A, Cendrowski K, Sawicki W. Dialkylcarbamoyl chloride–impregnated dressing for the prevention of surgical site infection in women undergoing cesarean section: a pilot study. Arch Med Sci. [Internet]. 2016;12(5):1036-1042. doi: https://doi.org/gm8t9t
Susilo YB, Mattsby–Baltzer I, Arvidsson A, Husmark J. Significant and rapid reduction of free endotoxin using a dialkylcarbamoyl chloride–coated wound dressing. J. Wound Care. [Internet]. 2022; 31(6):502-509. doi: https://doi.org/gqgbmf
Falk P, Ivarsson ML. Effect of a DACC dressing on the growth properties and proliferation rate of cultured fibroblasts. J. Wound Care [Internet]. 2012; 21(7):327–332. doi: https://doi.org/f34s9g
Sutedja E, Widjaya MRH, Dharmadji HP, Suwarsa O, Pangastuti M, Usman HA, Firdaus CP. Lupus Erythematosus Profundus with multiple overlying cutaneous ulcerations: a rare case. Clin. Cosmet. Investig. Dermatol. [Internet]. 2023; 16:2721- 2726. doi: https://doi.org/pvf9
Słoniecka M, Le Roux S, Zhou Q, Danielson P. Substance P enhances keratocyte migration and neutrophil recruitment through interleukin-8. Mol. Pharmacol. [Internet]. 2016; 89(2):215–225. doi: https://doi.org/f3p6h7
Galehdari H, Negahdari S, Kesmati M, Rezaie A, Shariati G. Effect of the herbal mixture composed of aloe vera, henna, adiantum capillus–veneris, and myrrha on wound healing in streptozotocin–induced diabetic rats. BMC Complement. Med. Ther. [Internet]. 2016;16:386. doi: https://doi.org/f86ns9
Beserra FP, Gushiken LFS, Vieira AJ, Bérgamo DA, Bérgamo PL, Oliveira de Souza M,Hussni CA, Takahira RK, Nóbrega RH, Monteiro Martinez ER, Jackson CJ, De Azebedo Maia GL, Rozza AL, Pellizzon CH. From inflammation to cutaneous repair: Topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF–kB, Ki-67, growth factor expression, and distribution of collagen fibers. Int. J. Mol. Sci. [Internet]. 2020; 21(14):4952. doi: https://doi.org/gkqbfj
Sugawara T, Gallucci RM, Simeonova PP, Luster MI. Regulation and role of interleukin 6 in wounded human epithelial keratinocytes. Cytokine [Internet]. 2001; 15(6):328–336. doi: https://doi.org/cf26q4
Ommori R, Ouji N, Mizuno F, Kita E, Ikada Y, Asada H. Selective induction of antimicrobial peptides from keratinocytes by staphylococcal bacteria. Microb. Pathog. [Internet]. 2013; 56:35–39. doi: https://doi.org/f4mrfp
Jordana M, Sarnstrand B, Sime PJ, Ramis I. Immune – inflammatory functions of fibroblasts. Eur. Respir. J. [Internet]. 1994; 7(12):2212–2222. doi: https://doi.org/dwq3xm