
Rev. Téc. Ing. Univ. Zulia. Vol. 32, Nº 2, 170 - 179, 2009

Efficient evaluation of Top-k Skyline queries
Marlene Goncalves and María-Esther Vidal

Departamento de Computación, Universidad Simón Bolívar. Sartenejas-Baruta, Venezuela.
Código Postal 1080. Fax: 0212-9063243. Telf. 0212-9063269. {mgoncalves,mvidal}@usb.ve

Abstract

Emerging technologies have made available very large data repositories, which may be unreliable for
a given preference criteria. In order to be able to process these repositories, users may need to discard use-
less information based on some preference conditions. Different preference-based query languages have
been defined to support the bases for discriminating poor quality data and to express user’s preference
criteria. In this paper, we consider the preference-based query language, “Top-k Skyline”, which combines
the order-based and score-based paradigms. Thus, “Top-k Skyline” is able to identify the top-k objects
w.r.t. a score function f among the ordering induced by a multicriteria function m. Several algorithms have
been proposed to implement these two paradigms independently; however, the problem of efficiently evalu-
ating “Top-k Skyline” queries remains open. In this work, we propose evaluation strategies for “Top-k Sky-
line” queries and we report initial experimental results that show the properties of our proposed solutions.

Key words: Preference-based queries, Skyline, Top-k.

Evaluación eficiente de consultas Top-k Skyline

Resumen

Tecnologías emergentes permiten el acceso a grandes repositorios de datos, mucho de los cuales pue-
den publicar datos pocos confiables. Los usuarios que acceden independientemente a estos repositorios de-
ben ser capaces de identificar y descartar información que no sea de utilidad, basándose en condiciones de
preferencias. Diferentes lenguajes de consultas basadas en preferencias han sido definidos, los cuales per-
miten discriminar datos de poca calidad y expresar criterios de preferencias. En este trabajo, se presenta el
lenguaje “Top-k Skyline”, que combina los paradigmas basado en orden y score, y es capaz de identificar los
mejores k objetos de acuerdo a una función de score f entre el orden inducido por una función multicriterio
m. Distintos algoritmos han sido propuestos para implementar dichos paradigmas independientemente;
sin embargo, el problema de evaluación eficiente de consultas “Top-k Skyline” permanece abierto. En este
trabajo, se proponen estrategias de evaluación para consultas “Top-k Skyline” y se presentan resultados ex-
perimentales iniciales que muestran las propiedades de las soluciones propuestas.

Palabras clave: Consultas basadas en Preferencias, Skyline, Top-k.

Introduction

Currently, Google has indexed between ten
and thirteen billion of Web pages(1). Some of these
pages may publish irrelevant data, and users

that access these data need to discard useless in-
formation based on their preferences or decision
criteria. To express these criteria for a certain col-
lection of data, different preference-based query
languages have been defined. These languages

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

1 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

can be grouped into three paradigms: or-
der-based where the objective is to identify all the
objects that are non-dominated by any other ob-
jects [1-7]; score-based that linearly orders the
input data and identifies the top-k objects from
this ordering [8-12]; and a hybrid paradigm that
retrieves the top-k objects among the ordering in-
duced by a multicriteria function [2, 13-17]. In
these paradigms, the input dataset can be dis-
tributed among several data sources.

The main problem of order-based query en-
gines is to compute the first stratum or Skyline,
i.e., all optimal or non-dominated objects in
terms of a multicriteria function, which induces a
partially ordered set or strata. On the other hand,
score-based query engines rank the top-k objects
in terms of a positive linear score function that
induces a total order of the objects. Finally, hy-
brid languages combine score and multicriteria
functions, and the problem is to identify the top-k
objects among a partially ordered set or strata.

Existing hybrid query engines only com-
pute the top-k objects of the first stratum or Sky-
line [2, 13-17]. Although the answers produced
by these engines are sound, they may be incom-
plete when k is greater than the Skyline cardinal-
ity. In this paper, we propose the hybrid language
Top-k Skyline, and evaluation algorithms that
overcome limitations of existing hybrid query en-
gines by reducing the number of non-necessary
accesses and probes under certain properties of
the input dataset.

Formally, given a Top-k Skyline query, a
multicriteria function m, a score function f and a
dataset of objects O which may be distributed
among several data sources, we are interested in

defining algorithms to efficiently identify the top-k
objects from strata R of O, using the functions f
and m, respectively. Strata R is a sequence of sub-
sets <R1,..., Rn>, where each Ri is a stratum, Ri �

O, and objects in Ri are better than objects in Ri+1

for each criterion in m. Thus, R is a partition of O
according to m. Objects in Ri are non-dominated,
i.e., none of these objects is better than the others
for all criteria in m. Therefore, our objective is to
identify the Top-k Skyline while non-necessary
probes of functions m and f are reduced.

To illustrate how a hybrid query engine
works, consider a research company that has two
vacancies and received applications from seven
candidates. Candidates are described by an iden-
tifier, degrees, publications, years of professional
experience, and grade point averages. Suppose
that the following relational table represents can-
didate’s information: Candidate(Id, Degree, Publi-
cations, Experience, GPA). Additionally, Table 1 il-
lustrates information of seven candidates.

According to the company policy, all criteria
are equally important and relevant; hence, either
a weight or a score function cannot be assigned.
A candidate can be chosen if there is any other
candidate with higher degree, publications, and
experience. To nominate a candidate, one must
identify candidates that are not dominated by
any other candidate in terms of these criteria.
Thus, tuples in table Candidate must be selected
in terms of Degree, Publications, and Experience.
For example, the candidate “d” dominates candi-
dates “e”, “f”, and “g” because he has higher de-
gree, more publications and experience. Follow-
ing this idea, the nominate candidates in Table 2
are identified.

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

Efficient evaluation of Top-k Skyline queries 171

Table 1
Candidates for two vacancies of a research company

Id Degree Publications Experience GPA

a Post Doctorate 9 2 3.75

b Post Doctorate 10 1 4.00

c PhD 12 2 3.75

d MsC 13 4 3.60

e Engineer 6 3 3.25

f Engineer 5 2 3.20

g Engineer 4 2 3.15

Since the company only has two vacancies,
it must apply another criterion to select the two
new staff members and discard the others. Staff
members will be selected among nominates in
terms of the top 2 values of one or more score
functions.

First, considering the maximum GAP as
one score function, three candidates are the new
nominates: “b”, “a”, and “c”. Then, taking into ac-
count the degree, the tie between “a” and “c” is
broken, and the selected members are: “b” and
“a”. From a procedural point of view, to select the
staff members, preference-based queries need to
be posted against the table Candidate.

There are several query languages to spec-
ify preference criteria. Skyline and Top-k are two
user preference languages that could be used to
identify some of the staff members. However,
none of them will provide the complete set, and
post-processing may be needed. On one hand,
Skyline offers a set of operators to build a set of
points that are non-dominated by any other point
in the dataset. Thus, by using Skyline, one could
just obtain the nominated candidates and a score
function needs to be applied afterwards to iden-
tify the new staff members. On the other hand,
Top-k allows referees to implement a score func-
tion and may filter only some of the winners in
terms of the combined function. In order to
choose staff members, Top-k computes the score
for each tuple without checking dominance rela-
tionship between tuples in the dataset. Neverthe-
less, it is not possible to define such function, be-

cause all criteria are equally important and rele-
vant. Therefore, to solve the problem of selecting
the staff members, the top k elements among the
objects in a partially ordered set need to be com-
puted, and a hybrid approach that combines the
benefits of Skyline and Top-k is required.

Time complexity for answering prefer-
ence-based queries is high and it depends on the
size of the input and the number of probes per-
formed. In general, the problem of identifying the
Skyline or first stratum is O(n2); this is because
all the input instances need to be compared
against themselves to probe the multicriteria
function m(2). Additionally, the time complexity of
selecting the top-k objects is O(nlogn) because in
the worst case, the whole input set needs to be or-
dered(3). Finally, since a Top-k Skyline query en-
gine requires to stratify the input data until the
top-k objects are computed, more than one stra-
tum may be needed; and in consequence, the
time complexity is mainly impacted by the cost of
building the strata.

To reduce the processing time, Top-k Sky-
line query engines must implement efficient
mechanisms that minimize the score and
multicriteria function probes. In this paper, we
propose two evaluation techniques to solve
Top-k Skyline queries, and present our initial
results.

The paper is comprised of five sections. In
Section 2, we describe related approaches. In
Section 3, we define two algorithms for comput-
ing the Top-k Skyline. In Section 4, we report our

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

172 Goncalves and Vidal

Table 2
Nominate Candidates for two vacancies of a research company

Id Degree Publications Experience GPA

a Post Doctorate 9 2 3.75

b Post Doctorate 10 1 4.00

c PhD 12 2 3.75

d MsC 13 4 3.60

2 A study of complexity Skyline problem is presented in .
3 First the score function is probed for each instance, then data is ordered and ?nally, the top-k instances are re-

turned.

experimental results. Finally, in Section 5, the
concluding remarks and future work are pointed
out.

2. Related Work and Background

In [3, 4] algorithms identify the Skyline by
scanning the whole dataset. On the other hand,
progressive (or online) algorithms for computing
Skyline have been introduced [17, 18]. A progres-
sive algorithm returns the first results without
having to read the entire input and produces
more results during execution time. Although
these strategies could be used to implement our
approach, they may be inefficient because they
may perform a number of non-necessary probes
or require index structures which are not acces-
sible in Web data sources.

In order to process Skyline queries against
Web data sources, efficient algorithms have been
designed considering sequential and random ac-
cesses. Each data source contains object identifi-
ers and their scores. A sequential access re-
trieves an object from a sorted data source while
a random access returns the score from a given
object identifier.

The Basic Distributed Skyline (BDS) de-
fined by Balke et al. [1] is one of the algorithms to
solve this kind of Skyline queries. BDS obtains a
Skyline superset in a first phase and in a second
phase; it discards the dominated ones of this
superset. A second algorithm known as Basic
Multi-Objective Retrieval (BMOR) is presented by
Balke and Güntzer [2]; in contrast to BDS, it com-
pares all the seen objects once it finds that some
seen object dominates a virtual object that is up-
dated constantly. Both algorithms avoid to scan

the whole dataset, and to minimize the number of
probes.

To understand BDS and BMOR, consider
the relational table Candidate. Publications and
grade point averages are collected from two dif-
ferent data sources as can be seen in Table 3.
Sources are sorted by Publications or Grade
Point Averages, respectively. Also, suppose that a
department is interested in candidates with max-
imum number of publications and grade point
averages.

To solve this query, BDS performs sorted
access in a round robin fashion on the data set in
order to compute a Skyline superset as is shown
in Table 4. Once BDS completely sees the object
“b” which dominates any unseen object, it stops,
and the Skyline superset is comprised of the ob-
jects “a”, “b”, “c”, and “d”. BDS can stop at this

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

Efficient evaluation of Top-k Skyline queries 173

Table 3
Datasets exported by sources S1 and S2

S1 S2

Id Publications Id GPA

d 13 b 4.00

c 12 a 3.75

b 10 c 3.75

a 9 d 3.60

e 6 e 3.25

f 5 2 3.20

g 4 2 3.15

Table 4
Data accessed by BDS and BMOR

BDS BMOR

Id Publications/GPA Source Id Publications/GPA Source Virtual Object

d 13 S1 d 13 S1 (13,)

b 4.00 S2 b 4.00 S2 (13,4)

c 12 S1 c 12 S1 (12,4)

a 3.75 S2 a 3.75 S2 (12,3.75)

b 10 S1 b 10 S1 (10,3.75)

point, because data is ordered in the sources and
any unseen object will be worse in each attribute
than “b”. Then, BDS performs random access to
retrieve the unseen scores from “a”, “c”, and “d”;
using all of these values, it discards dominated
objects from the Skyline superset. Finally, it out-
puts the Skyline which is composed by “a”, “b”,
“c”, and “d”.

Similarly, BMOR scans the same objects
than BDS but constructs a virtual object. A vir-
tual object contains the worst values seen in each
sequential access. For each seen object, the algo-
rithm performs random access for retrieving un-
seen values and compares pair-wise the seen ob-
jects versus the updated virtual object. Table 4
presents the list of virtual objects produced,
where each pair represents the worst values seen
for the sources S1 and S2. At this point, the seen
object “c” dominates the last virtual object
(10,3.75) and therefore, a Skyline superset was
obtained because the object “c” dominates any
unseen object. The algorithm discards dominated
objects and produces the same result as BDS.

Both algorithms perform a minimal num-
ber of probes for computing the first stratum [1,
2]. Since, it maybe required to scan more than
the first stratum to solve Top-k Skyline queries,
these two approaches need to be extended to pro-
duce all the necessary strata. In this paper, we
extend these two algorithms to efficiently imple-
ment the Top-k Skyline.

3. Top-k Skyline Algorithms

We propose two algorithms that assume
certain order in the values of the attributes to
identify the point where to stop probing the score
and multicriteria functions. The first algorithm is
built upon a final object, where scores in the
multicriteria function m have been completely
seen before the stopping point; while the second
considers a virtual object that contains the mini-
mum seen values in each of the attributes con-
tained in function m.

Our algorithms assume that the values of
each attribute Ai are stored in an ordered list Si.

All these lists are scanned in a round robin fash-
ion and only one object is recovered during each
access. The virtual object is built with the worst
seen values in each list Si. If an object in the stra-
tum dominates the virtual object, then it is not
necessary to continue looking for non-dominated
objects. This is because the virtual object will
dominate any unseen object, since any unseen
object has worse value in each attribute than the
virtual object. Thus, we have various virtual ob-
jects until finding the last necessary stratum.
Similarly, the final object is built accessing in a
round robin fashion each list Si, and because the
final object will dominate any unseen object, it is
not required to look for more non-dominated ob-
jects.

3.1. Basic distributed Top-k Skyline
(BDTKS)

We have extended the BDS Algorithm intro-
duced in [1] in order to construct a set of Top-k
Skyline objects. Our algorithm, showed in Figure
1, first builds all the necessary strata NS, and
then, it probes the value of the function f for these
objects. Elements are considered respecting the
order induced by m, i.e., the top-k tuples corre-
spond to the best k objects in the topological sort
of NS(4).

The Basic Distributed Top-K Skyline
(BDTKS) algorithm in Figure 1 iteratively con-
structs necessary stratum until the Top-K Sky-
line tuples are identified (step 2 SEARCH TOP-K
SKYLINE). To build each necessary stratum, the
algorithm presented in Figure 1 follows three
phases labeled as: SEARCH, SCAN, and LOAD
STRATUM. During the SEARCH, the algorithm
finds the first object, called final object, i.e., the
object where the multicriteria attribute scores
have been seen in each list Si. In SCAN or second
phase (steps from 2b to 2c), it verifies if final ob-
ject’s scores are not duplicate; then, it executes a
sequential access for each list Si, and stops when
a different score is found in each list. The last
phase (steps from 2d to 2g) or LOAD STRATUM
randomly accesses each partially seen object,
and stores non-dominated objects in a current

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

174 Goncalves and Vidal

4 Topological sorting is done according to the combined score function f.

stratum and dominated objects in a temporal
stratum. Objects in the temporal stratum are not
discarded and are passed to the next iteration of
the loop. All the objects that constitute a stratum
output in an iteration of the algorithm are re-
moved from the input.

Steps SEARCH, SCAN, and LOAD STRA-
TUM correspond to the steps performed by the
Basic Algorithm which has been proven to be
completed (Theorem 1 [1]), i.e., these steps com-
pute the Skyline of a given dataset. Our algorithm
Basic Distributed Top-K Skyline iterates over
these steps until at least the top-k tuples are
identified. In each iteration, the Basic Distrib-
uted Top-K Skyline algorithm receives as input a
dataset where the Skyline identified in the previ-
ous iteration has been removed; thus, the Basic
Distributed Top-K Skyline computes all the
strata required to produce the top-k tuples, i.e.,
the algorithm is complete. On the other hand, the
Basic Distributed Top-K Skyline stops iterating

immediately after computing the minimal strata
whose cardinality is greater or equal to “k” and
non-necessary strata are not computed; in con-
sequence, the Basic Distributed Top-K Skyline is
optimal w.r.t. the number of necessary strata and
it minimizes the number of probes.

3.2. Basic multi-objective retrieval
for Top-k Skyline (BMORTKS)

The Basic Multi-Objective Retrieval for
Top-K Skyline (BMORTKS) algorithm in Figure 2
is also an extension of a previously defined algo-
rithm; in this case, we extended the basic
multi-objective retrieval algorithm proposed by
Balke and Güntzer’s [2]. The BMORTKS algo-
rithm iteratively constructs necessary strata un-
til the top-k objects are identified.

Each necessary stratum is built in two
steps: SEARCH and LOAD STRATUM. In
SEARCH, a list Si is visited in a round robin fash-

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

Efficient evaluation of Top-k Skyline queries 175

INPUT: O: Data set; k: integer; m: multicriteria function; f: combined score

function;

OUTPUT: Top-K Skyline objects;

//INITIALIZE

1. P1 � �;K1,...,Kn � �; i � n; s � 1; cont 0;�

// SEARCH TOP-K SKYLINE

2. WHILE (cont < k and �o � O)

// SEARCH

a) WHILE (�o � O and all the scores si(o) are not known)

i) Select an object o by sorted access from any list i in round robin

fashion and add o to Ki;

//SCAN

b) i 1;�

c) WHILE (i � n)

//VERIFY

i) WHILE (the next score in list Si is equal to si(o))

A. Select an object o by sorted access from list i and add o to

Ki;

ii) i i + 1;�

// LOAD STRATUM

d) i 1;�

e) WHILE (i � n)

i) Do all necessary random access for the objects in Ki;

ii) Compare all seen objects pairwise in Ki;

iii) Add non-dominated objects to Ps;

iv) Remove non-dominated objects from Ki;

v) Create Ps+1; i i + 1;�

f) Calculate and order all non-dominated objects by the combined functionf

in stratum Ps;

g) cont cont + size(� Ps); s s + 1;�

// EXIT

3) return Top-k Skyline objects;

Figure 1. Basic distributed Top-K Skyline.

ion and an object o is sequentially accessed from
this list; the rest of the non-seen scores for o are
randomly accessed from the other lists. Then, the
algorithm probes the combined score function for
each seen object (step2c). In each iteration, a vir-
tual object is updated with the minimum score
values that have occurred in each list (step 2d)
and when a seen object dominates the virtual ob-
ject (step 2e), the non-dominated objects are
added to current strata and the dominated ob-
jects are included into a temporal stratum, which
will be used in the next iteration. The algorithm
stops when just k tuples have been produced.

Similar to the Basic Distributed Top-K Sky-
line, the Basic Multi-Objective Retrieval for
Top-K Skyline is correct based Theorem 1 pre-
sented in Balke and Güntzer [2] that establishes
that the Multi-Objective Retrieval Algorithm is
correct. In addition, the algorithm computes a
minimal number of strata because it stops iterat-
ing right after computing the minimal strata
whose cardinality is greater or equal to “k”; in
consequence, we can say that the Basic
Multi-Objective Retrieval for Top-K Skyline algo-
rithm is complete and optimal w.r.t. the number
of strata.

4. Experimental Study

Our experimental study was performed on
Oracle 9i. The study consisted of experiments
running over relational tables with 10,000
tuples. Each table contains an identifier, and a
column of type real, that represents the score.
Each tuple in the natural join of the six tables
corresponds to an object. Values of the real col-
umns varied from 0.0 to 1.0. A column may have
duplicated values. The attribute values were gen-
erated for the following two data distributions:
Mixed and Correlated, where:

– Mixed: Attributes are independent of each
other. Data are divided into two groups of
three columns: one group was generated
using a uniform distribution and the other,
using a Gaussian distribution.

– Correlated: Data are divided in two groups
of the three real columns. In each group,
the attribute values for a base column were
generated following a uniform distribu-
tion.

The two algorithms were implemented in
Java 1.5 and the experiments were executed on a
SunFire V440 machine equipped with 2 proces-

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

176 Goncalves and Vidal

INPUT: O: Data set; k: integer; m: multicriteria function; f: combined score

function;

OUTPUT: Top-K Skyline objects;

//INITIALIZE

1. P1 � �;cStrata � �; i � 1; cont 0;�

// SEARCH TOP-K SKYLINE

2. WHILE (cont < k and �o � O)

// SEARCH

a) Select an object o by sorted access from any list in round robin

fashion;

b) Add o to cStrata;

c) For new objects perform random accesses on the other lists and

calculate

their object’s combined score function f;

d) Update a virtual database object p characterized by the minimum score

values that have occurred in each list;

// LOAD STRATUM

e) WHILE (some object p has already been seen for which holds w does not

dominate p)

i) Compare all seen objects pairwise in cStrata;

ii) Add non-dominated objects of cStrata to the stratum Pi;

iii) Create temporal stratum TemporalStratum with dominated objects

cStrata;

iv) cStrata � TemporalStratum;

v) cont cont + size(� Pi); i � i + 1;

// EXIT

3) return Top-k Skyline objects;

of

Figure 2. Basic multi-objective retrieval for Top-K Skyline.

sors Sparcv9 of 1.281 MHZ, 16 GB of memory
and 4 disks Ultra320 SCSI of 73 GB running on
SunOS 5.10 (Solaris 10).

We randomly generated ten queries char-
acterized by the following properties: (a) there is
only one table in the FROM clause; (b) the attrib-
utes in the multicriteria function and the score
function were chosen randomly among the at-
tributes of the table, following a uniform distri-
bution; (c) directives for each attribute of the
multicriteria function were selected randomly
considering only maximizing and minimizing
criteria; (d) the number of attributes of the
multicriteria function was two, four and six; (e)
the score function was selected randomly
among the minimum, average, and geometric
average; (f) the number of score function argu-
ments was chosen randomly following a uniform
distribution; and (g) k corresponds to 1% of data
size.

Figure 3 reports the average of multicriteria
function probes (MP)(×104 probes) and average
time (×106 miliseconds) required by each algo-
rithm. Average time is the average of the ten que-
ries run against the tables with data generated
according to the mixed distribution. In general,
we can observe that:

1. The number of multicriteria function pro-
bes is lower for the BDTKS algorithm. This
is because this algorithm only compares all

seen objects until it finds the final object.
On the other hand, the BMORTKS algo-
rithm has to compare all the objects with
the virtual object and then, once this condi-
tion is satisfied, the algorithm has to com-
pare all these objects with themselves to de-
termine which of them are non-dominated.
Thus, probing with respect to the virtual
object increases the number of compari-
sons of the BMORTKS algorithm.

2. The BDTKS algorithm requires more time.
This might be because the position of the fi-
nal object is higher than the virtual object
and therefore, the BDTKS algorithm requi-
res more sequential accesses.
Figure 4 reports the results of the experi-

ments for correlated data. We can summarize
that:

1. The number of multicriteria function pro-
bes is higher for the BDTKS algorithm. The
correlation seems to affect the BDTKS algo-
rithm. This might be because the number of
sequential accesses required to find the fi-
nal object is greater than the same measure
in the BMORTKS algorithm, and therefore,
the number of multicriteria function probes
increases.

2. Similar to non-correlated data, the BDTKS
algorithm requires more time.

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

Efficient evaluation of Top-k Skyline queries 177

Dimensions Dimensions

#
P

ro
b

e
s

(×
1

0
)

4

T
im

e
(×

1
0

m
s
)

6

Figure 3. Non-correlated dataset.

Dimensions Dimensions

#
P

ro
b

e
s

(×
1

0
)

4

T
im

e
(×

1
0

m
s
)

6

Figure 4. Correlated dataset.

5. Conclusions and FutureWork

In this work, Top-k Skyline techniques
have been proposed: the BDTKS and BMORTKS
algorithms. The first is based on the computation
of a final object whose scores have been com-
pletely seen. The second computes a virtual ob-
ject which is comprised of the minimum scores
seen so far. Both algorithms are complete and
construct fewer strata than a naive solution. Ad-
ditionally, the number of probes performed is re-
duced, since only the necessary strata are con-
sidered. Initial experimental results show that
BDTKS performs less multicriteria function
probes and spends more evaluation time when
data is non-correlated. Finally, we could observe
that data correlation may affect the behavior of
both algorithms, and BMORTKS has better per-
formance in terms of multicriteria function
probes and evaluation time.

However, our algorithms are not able to
stop before the last necessary stratum will be
built completely; in consequence, these algo-
rithms are not optimal w.r.t. the number of
probes. In the future, we will define new tech-
niques that overcome this limitation.

On the other hand, we have not considered
that there may be several execution plans for a
given Top-k Skyline query. Considering prefer-
ence criteria during the query optimization might
help to identify better execution plans. We plan to
integrate Top-k Skyline techniques into a rela-
tional engine to select good execution plans that
take into account preference criteria.

References

1. Balke, W-T., Güntzer, U., and Zheng, J. “Effi-
cient Distributed Skylining for Web Informa-
tion Systems”. Proceedings of the Interna-
tional Conference on Extending Database
Technology (EDBT), Greece (2004), 256-273.

2. Balke,W-T. and Güntzer, U. “Multi-objective
Query Processing for Database Systems”.
Proceedings of the International Conference
on Very Large Databases (VLDB), Canada
(2004), 936-947.

3. Börzönyi, S., Kossman, D., and Stocker, K.
“The Skyline operator”. Proceedings of the In-

ternational Conference on Data Engineering
(ICDE), Germany (2001), 421-430.

4. Godfrey, P., Shipley, R. and Gryz, J. “Maxi-
mal Vector Computation in Large Data Sets”.
Proceedings of the Conference on Very Large
Data Bases (VLDB), Norway (2005), 229-240.

5. Lee, K., Zheng, B., Li, H. and Lee, W.-C. “Ap-
proaching the skyline in Z order”. Proceed-
ings of the International Conference on Very
Large Databases (VLDB), Austria (2007),
279-290.

6. Vlachou, A., Doulkeridis, C. and Kotidis, Y.
“Angle-based space partitioning for efficient
parallel skyline computation”. Proceedings
of the ACM International Conference on
Management of Data (SIGMOD), Canada
(2008), 227-238.

7. Bast, H., Majumdar, D., Schenkel, R.,
Theobald, M. and Weikum, G. “IO-Top-k: in-
dex-access optimized top-k query process-
ing”. Proceedings of the International Con-
ference on Very Large Databases (VLDB), Ko-
rea (2006), 475-486.

8. Carey, M., Kossman, D. “On saying “Enough
already!” in SQL”. Proceedings of the ACM
SIGMOD Conference on Management of
Data, Vol. 26, No.2 (1997), 219-230.

9. Deshpande, P., Deepak, P., and
Kummamuru, K. “Efficient Online Top-K Re-
trieval with Arbitrary Similarity Measures”.
Proceedings of the International Conference
on Extending Database Technology (EDBT),
France (2008), 356-367.

10. Chang, K. And Hwang, S-W. “Optimizing ac-
cess cost for top-k queries over Web sources:
A unified cost-based approach”. Technical
Report UIUCDS-R-2003-2324, University of
Illinois at Urbana-Champaign (2003).

11. Fagin, R. “Combining fuzzy information from
multiple systems”. Journal of Computer and
System Sciences (JCSS), Vol.58, No.1 (1996),
216-226.

12. Vlachou, A., Doulkeridis, C. Noorvaeg, K.
Vazirgiannis, M. “On Efficient Top-k Query
Processing in Highly Distributed Environ-
ments”. Proceedings of the ACM Interna-
tional Conference on Management of Data
(SIGMOD), Canada (2008), 753-764.

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

178 Goncalves and Vidal

13. Goncalves, M and Vidal, M.E. “Preferred Sky-
line: A hybrid approach between SQLf and
Skyline”. Proceedings of Database and Ex-
pert Applications (DEXA), Denmark (2005),
375-384.

14. Goncalves, M and Vidal, M.E. “Top-k Sky-
line: A Unified Approach”. Proceedings of
OTM (On the Move) 2005 PhD Symposium,
Cyprus (2005), 790-799.

15. Lee, G. Y. J. and Hwang, S. “Telescope:
Zooming to interesting skylines”. Proceed-
ings of the International Conference on Data-
base Systems for Advanced Applications
(DASFAA), Thailand (2007), 539-550.

16. Lin, X., Yuan, Y., Zhang, Q. and Zhang, Y.
“Selecting Stars: the k most representative

skyline operator”. Proceedings of the Inter-
national Conference on Data Engineering
(ICDE), Turkey (2007), 86-95.

17. Lo, E., Yip, K., Lin, K-I. and Cheung, D. “Pro-
gressive Skylining over Web-Accessible Da-
tabase”. Journal of Data and Knowledge En-
gineering, Vol. 57, No. 2 (2006), 122-147.

18. Papadias, D., Tao, Y., Fu, G. and Seeger, B.
“Progressive Skyline computation in data-
base systems”. ACM Transactions Database
Systems, Vol. 30, No. 1 (2005), 41-82.

Recibido el 7 de Marzo de 2008

En forma revisada el 9 de Marzo de 2009

Rev. Téc. Ing. Univ. Zulia. Vol. 32, No. 2, 2009

Efficient evaluation of Top-k Skyline queries 179

	New Table of Contents
	89 Development of tubular coated electrodesfor underwater wet welding
	Alexandre Queiroz Bracarense1, Lorenzo Perdomo González2,Ezequiel Caires Pereira Pessoa3 y Rafael Quintana Puchol2
	Desarrollo de electrodos tubulares revestidospara la soldadura subacuática mojada

	98 Interactive optimization tool for the optimum design of helical extension springs
	Carlos H. Galeano, Carlos A. Duque y Andrés Tovar
	Herramienta computacional interactiva para el diseño óptimo de resortes helicoidales de tracción

	109 Effect of external donor and prepolymerizationon the performance of Ziegler-Natta catalystsin propylene polymerization
	Francisco Osorio, Juan Fernández1, Nicolino Bracho2y Tamara Rajmankina1*
	Efecto del electrodonador externoy la prepolimerización sobre el rendimientode catalizadores Ziegler-Natta en la polimerizaciónde propileno

	119 Dynamic parameter identification of parallel robots starting from the measurement of joints position and forces
	Miguel Díaz-Rodríguez1, Vicente Mata2, Nidal Farhat2y Sebastián Provenzano1
	Identificación de parámetros dinámicos de robot paralelos a partir de la medición del par y la posición en los actuadores

	126 Biomass production of microalga Scenedesmus sp. with wastewater from fishery
	Charity E. Andrade R.1, Alexandra L. Vera B.1, Carmen H.Cárdenas L.2y Ever D. Morales A.1*
	Producción de biomasa de la microalga Scenedesmus sp. utilizando aguas residuales de pescadería

	135 Water proporcional meters used as a toolfor integrated water management
	Guillermo Andrés Fuentes Barrera y Jhoniers Guerrero Erazo*
	La macromedición de agua de tipo proporcionalcomo una herramienta para la gestión integraldel recurso hídrico

	143 Quantification of sediment transport through direct measurements and the use of empirical models in an experimental catchmentin the Andes Mountains, Southern Chile
	Andrés Iroumé y Paula G.Y. Uyttendaele
	Cuantificación del transporte de sedimentos mediante mediciones directas y el uso de modelos empíricosen una cuenca experimental de la Cordillerade Los Andes, Sur de Chile

	152 Cellulase production by Trichoderma reeseiRut C-30 from different cellulosic substrates
	Alejandro Colina, Alexis Ferrer y Lauris Urribarrí
	Producción de celulasas por Trichoderma reeseiRut C-30 en diferentes substratos celulósicos

	161 Robust fault detection in uncertain polytopic linear systems
	Addison Ríos-Bolívar1 y Wilber Acuña-Bravo2
	Detección robusta de fallas en sistemas linealescon incertidumbres politópicas

	171 Efficient evaluation of Top-k Skyline queries
	Marlene Goncalves and María-Esther Vidal
	Evaluación eficiente de consultas Top-k Skyline

