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Abstract

The definition of [F, F2] (5,1) - structure manifold is given. It is approved that there are two distribu-
tions Land N on the manifold such that Ff.j =1,2,8 act an L as almost complex operators, and acton Nas
null operators. It is proved that an invariant submanifold of a [F1, F2] (5,1)- structure manifold inherites

-such a structure.
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Multiplicidad diferenciable con una estructura
[F1,F2] (5,1)

Resumen

La definicion de multiplicidad de estructura [F1,Fy] (5,1) es dada.Se prueba que hay dos distribucio-
nes Ly Nsobre la multiplicidad tales que F‘f. =1,2,3 acttian en L como operadores casi complejos, y actiian
sobre N como operadores nulos. Se prueba que una submultiplicidad invariante de una multiplicidad de
estructura [F1,Fy] (5,1) hereda una estructura tal.
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Introduction If (1) is replaced by
AC” manifold on which there exists aC” (@ FF+F=0,

tensor field F= 0 of type (1,1) such that b) rank (M =r<n 4)

F% = -I, Iisthe identity tensor (1 where n is the dimension of M, then we say that
we have an F-structure manifold with structure

is called an almost complex manifold with almost [3].

complex structure [1]. If we have on M two F-structures, F} and Fs,

If we have on M three complex structures such that

Fy, F», and F3 such that
(@ FP+F =0, () FP+F, =0,

(@) FF=-I,1=123 (2) (c) F?=FZ2, (d) F, = FF, = -F,F, (5)
b) Fy=FF, = -F,F,, then M is called an {F,, F,} — structure manifold
F, = FyF) = -Fy Fy, with {F}, F,} - structure. It is proved that [4]:

F| = FyFy = -F3F. (3
1 al’y 342 ) (a) F;’ +F, =0, (b) F, = F,F; = —F,F,,
then { F|, F,, F;} are said to define an almost (¢) F,=FF =-FF,d F =F =F/ (6)
quarternion 3-structures on M. If rank [Fj) =,
everywhere on M, then dimension M = 4r [2]. If (4) is replaced by
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FP+F =0 (7)

then M is called an F5,1) - structure manifold
with F(5,1) - structure [5].
On an F(5,1) - structure manifold M, the opera-
tors
(@ ¢=-F", b) m=F*+1 (8)
Applied to M, for each P € M are complementary
projection operators. If rank (F) = reverywhere on
M, ¢ and m define two differentiable complemen-
tary distributions L and N on M of dimensions r
and n-r.

Suppose that V is an h-dimensional sub-
manifold of M with immersion

b:V->M (9)

Let B be the Jacobian map (B is a linear
transformation induced by b) such that a vector

field Xin Vat PeV, |-> BXin Mat b(P) e M. Let C,,
x=1,2,...,n-h be the field of normals to V [6].

2. [F1,F2] (5,1)-structure manifold

Definition

Let M be a C” n-dimensional manifold on
which there are two (5,1)-structures F; , i =1,2,
such that

(@) F°+F =0 (o) F’=F;
(c) Define F, = aF\F, = —aF,F, (10)
where a= i+ Lv{jl (i.e. a* = -1). The we sa
= \/5 «[i B, = . y

that we have an [F,F5] (5,1)-structure manifold
with [F;,Fy] (5,1)-structure.
Theorem 1

Let M be an [F}.F;](5,1) — structure mani-
fold. Then

(@ FS+F,=0 (b) F*=F =F;}

(c) F, =aF,F, = —aFF; F, = aF,F, = —aF;F,

d) F*=F; =F; (11
Proof
Using (10) (a) and (c) we have

Fy = d(FF,)° = —a[FF,RF,FF,FF,FE,]
= —a|F?F,FF,FF,FF;] = o FF,FF,FF}]
= a[F{’FzFlF;] = “anGFzs = —aF\F, = —F,
which is (11) (a)
R = F'F} = FF] = F]
F; = OfFle]4 = _[FlFZI?lFBF‘lFQFIFZJ

= [EZFZEEAﬂF22] = lFlstFleal = _EW‘F;
=-F'=F'=F,

which is (11) (b)
Using (10) we have
5 4 4 1 3
F,=-F? = -F{F, = -F{F, = —F}F,
> aF, = FJF, (12)
aFF, = C!ESF; = a-FlpldF:;FB
= anF:zaFa = _aF1F24F3 = _FstsFa = —F,(aF))
= —aF;F,
A RE, = —FF (13)
(13), (10) and (11) (a) give

F3F1=—F‘F3=—F15F35=—F1F23F3=F1F;F3=F1F3F;

~F,FF},

where F,'F, = F,F,

.. FyF, = -F,F\F; (14)
But F, = —F,F} (15)

(14) and (15) suggest that F, = kF,F,, k being a
constant

F} = K*(FF,)* = k'F'F;} = k°F; = -k*F}
ikt =2=1=1at,

Put F, = aF,F, = —aFF, (16)
Similarly we can prove that

F,F, = F,F,, and we have

F| = aF,F, = —aF,F,

Which is (11) (c)
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Premultiplying F, = aFf\F, by F, we get, from (16)
F32=aF3F,F2=F22
which give us (11) (d).

Theorem 2

On an [F},Fy] (5,1) - structure manifold M
we have

rank (F) = rank (Fy) = rank (F3) (17)

Assume that rank (F}) = r=constant, all over
M.
Put

(a ¢=-F' (b) m=F+1I (18)
then
@ (=-F'=-F' (b) ¢t=F+I=F +1 (19

This means that we have two differentiable
distributions L and N on M.

Proof
From (10) (¢) and (11) (c) we have

rank (Fy) < min [rank (E,) , rank (F3)]
rank (F,) < min [rank (F3) , rank (F)]

rank (F3) < min [rank (F}) , rank (F,)]

This proves (17)

(19) is obvious.

Theorem 3

On an [F}, Fy] (5,1) - structure manifold, let
J; = F} then we have

(@F¢=/F=F, MWJ=10J,=J (Jt=~L
(d) F,m=mF, =0 (e) Jm=0, Jj=123
(20)
Proof

Wehave i = F/'. UsingF} + F, = 0,j=1,2,3
We have

— 4 _ _ppt — b —
Ft=FF' =-FF =-F =F,

J J
similarly, we have (I, = I,
This proves (20) (a)
Using (10) (a) . and (11) (a) and (b) we have
JE=FR = -Ff =F! =4,

similarly we have ¢J, = J,
This proves (20) (b).

Using (10) (a), (11) (a) and (b), we have
it =B = <} =Ff =~

This proves (20) (c).

Using (10) (a) and (11) (a) and (b), we have
ij=FJ(I<‘1“+I)=I~“f+FJ. =0
similarly we have mF) = 0 . This proves (20) (d).

Using (10) (a) and (11) (a) and (b), we have

Jim=-F'(F'+D)=F +F' =0

4

similarly we have mJ; = 0

Theorem 4

On an [F},F,] (5.1) — structure manifold M,
F? (j=1,2,3) act on L as almost complex struc-
tures and on N as null operators.

Proof
Suppose that X € Li.e. /X = X. Then

JX = J X = £J X, where we used (20) (b).

This means that J; X € L. We cannot have
J;X=0, because if we have J;X=0, then J;X =0
or -#X = 0, which contradicts our assumption.

(20) (c) states that J7£ = —¢, this means that
Jjact on Las almost complex operators. Suppose
that Y e N, i.e. mY = Y. From (20) (b) we have

JY=J;#Y =0, i.e. J;act on Nas null operators.

Invariant Submanifolds

Theorem 5

Let Vbe a C” m - dimensional submanifold
ofa C” n-dimensional manifold M, let F}, i= 1,2 be
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two C” tensor fields of type (1,1) on M. Write
F{BX), as the sum of tangential and normal
parts, where X is a vector field in V.

F,(BX) = B(f,X)+ PX(X)C,, j=12 21)

where f;are two C” tensor fields of type (1.1) on V.

Write Fi(C,) as the sum of tangential and normal
parts

F,C,)=-BP, +&C, (22)

Then

F2(BX) = BIF?X)+ P} (F,X)C, + P(X)F,(C,)

= B(F}X)+ BG ,(X) + H}|(X)C, (23)
F(BX) = B(f/X)+ P} (f’X)C, + P(f, X)F,(C,)
+P(X)F/(C,)
= B(FX)+ BG,(X)+ H},(X)C, (24)

F}(BX) = B(f;X) + P(f}X)C, + P(f}X)F,(C,)
+P(f,X)F}(C) + PfIF°(C,)
= B(F}'X) + BG ,(X) + H4,(X)C, (25)

F}(BX) = B X)+ P (f}X)C, + P}(f} X)F,(C,)
+P ([P X)F’(C) + P (f,X)F](C,)
+P}(X)F}(C.)

= B(f/X) + BG,,(X) + H},(X)C, (26)

where B(F, "X)+ BG,(X)andH}(X)C,, are the tan-
gential and normal parts to Vrespectively. j= 1,2,
i=1234

F/(C) = -B(f;P,)~ P/ P,)C, + &F(C,)
= —B(f,P,) + BT,,(X) + R, (X)C, 27)

FC) = -BUB) = P[P, ~ B/ B,)FC,)
+alF(C,) = —B(fP,) + BT,,(X)
+R,(X)C, (28)

F(C) = -BU}P,) = PA(ffP)C, — P ([P IF/C,)
—P}(PFY(C,)+ aF}(C,) = ~BU/P,)
+BT,4(X)+ R, (X)=C, (29)

FP(€) = -B(;'P,) - PY([P,)C, — PYfFPIFC,)
—P/([P,)F}(C,) = P} P, )FC,)
+a.FC,)

= —B(f;'P,) + BT,,(X) + R, (X)C, (30)

where —B(fJ‘P}x)+B.’J‘“ﬂ[X] and Rj(X)C” are the
tangential and normal parts to V respectively,
i=1234andj=1,2.

FF,(BX) = B(f.[,X) + P} ([,X)C, + PJ(X)F(C,)
= B(f,./;X) + BS,,(X) + UL (X)C, (381)

FF,(BX) = B(f,f,X) + PX(f,X)C, + PX(X)F,(C,)
= B(f,/,X) + BS,(X) +U4(X)C,  (32)

where BS,,(X), BS;,(X), are the tangential parts
and U} (X), U4 (X) are the normal parts.

Proof
Premultiplying (21) by F; and using (21)
again we get (23).

Premultiplying (23) by F; and using (21) we
get (24). Similarly we can get (25) and (26).

Premultiplying (22) by F; and using (21) we
get (27). Similarly we can get (28), (29) and (30).

From (21) we have
F,(BX) = B(f,X) + P;(X)C,

Premultiplying by Fj and (21) we get (31).
Similarly we have (32).
Theorem 6

Let M be an [Fy F] (5,1) — structure mani-
fold, then

FPX + f(X)+G,(X)=0 (33)

HY%(X)+ PY(X) =0 (34)

X - X +G,(X)-G,(X)=0 (35)

HY(X)-H4{X)=0 (36)

[ifoaX + fofi X +S,(X)+8,,(X)=0 (37)

UYL(X)+ UL (X) =0 (38)
Proof

M is an [F|,Fy] (5,1) - structure manifold.
Then

F’(BX)+ F(BX)=0
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From (26) and (21) we have fP+f£=0 (42)
B(f°X) + BG,(X)+ H4(X)C, + B(fX)+ P*C, =0 fi=12 (43)
This gives (33) and (34) Nih = =L1 (44)

From F?(BX) = F}(BX) we have

Bf?X + BG,,(X)+ H}|(X)C, = Bf}X + BG,,(X)
+H3, (X)C,

This gives (35) and (36)
From
F,(BX) = aFF,(BX) = —aF,F,(BX)
we have

B(f.f,X) + BS,(X) + UL (X)C,
= —B(f,/;X) - BS,,(X) - U4(X)C,

This gives (37) and (38)

Theorem 7

Let Vbe an invariant submanifold of M with
respect to both F;, i =1,2. Then
F/BX)=B(f;X),j=12and i= 2,345 (39)

FIC) = =BU P, + alF™'(C,) (40)

FF,(BX) = B(f.[,X), (b) FF,BX) = B(f,f,X)
(41)

Proof

That V is an invariant submanifold means
that

F,(BX)=B(f,X) > P} =0, j=12

This in (23), (24), (25) and (26) give (39) also
put pj =0 in (27), (28), (29) and (30) give (40),
with j= 1,2 and i=2,3,4,5. Again if we put pj =0
in (31) and (32) we get (41).

Theorem 8

Let V be an invariant submanifold with re-
spect to both F;, i=1,2 of an [Fy, F5] (5,1) — struc-
ture manifold M, then

and Vitselfis an [f], f5] (5,1) - structure manifold.
Proof

Putting j = 2 and 5 in (39) and using the fact
that

F3(BX)+ F(BX) =0, i=12

and F?(BX) = F}(BX)
we get (42) and (43)

F\F,(BX) = —F,F,(BX)
(41) gives (44)

Let f, = af.f, = —af,f,, a*=-1

We have Vitselfis an [f; . f5] (5.1) - structure ma-
nifold.
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