Differentiable manifold with a [F₁,F₂] (5,1) - structure

Adnan Al-Ageel

Mathematics Department, Kuwait University, P.O. Box 5969. 13060 Safat - Kuwait

Abstract

The definition of $[F_1, F_2]$ (5,1) - structure manifold is given. It is approved that there are two distributions L and N on the manifold such that F_j^2 , j=1,2,3 act an L as almost complex operators, and act on N as null operators. It is proved that an invariant submanifold of a $[F_1, F_2]$ (5,1)- structure manifold inherites such a structure.

Key words: Polynomial G-structures, integrability, invariant distributions.

Multiplicidad diferenciable con una estructura [F₁,F₂] (5,1)

Resumen

La definición de multiplicidad de estructura $[F_1,F_2]$ (5,1) es dada. Se prueba que hay dos distribuciones Ly N sobre la multiplicidad tales que F_j^2 , = 1,2,3 actúan en L como operadores casi complejos, y actúan sobre N como operadores nulos. Se prueba que una submultiplicidad invariante de una multiplicidad de estructura $[F_1,F_2]$ (5,1) hereda una estructura tal.

Palabras clave: Estructura G polinomial, integrabilidad, distribuciones invariantes.

Introduction

 AC^{∞} manifold on which there exists aC^{∞} tensor field $F \neq 0$ of type (1,1) such that

$$F^2 = -I$$
, I is the identity tensor (1)

is called an almost complex manifold with almost complex structure [1].

If we have on M three complex structures F_1 , F_2 , and F_3 such that

(a)
$$F_j^2 = -I$$
, $i = 1, 2, 3$ (2)

(b)
$$F_3 = F_1F_2 = -F_2F_1$$
,
 $F_2 = F_3F_1 = -F_1F_3$,
 $F_1 = F_2F_3 = -F_3F_2$

then $\{F_1, F_2, F_3\}$ are said to define an almost quarternion 3-structures on M. If rank $(F_j) = r$, everywhere on M, then dimension M = 4r[2].

If (1) is replaced by

(a)
$$F^3 + F = 0$$
,
(b) $rank(F) = r \le n$ (4)

where n is the dimension of M, then we say that we have an F-structure manifold with structure [3].

If we have on M two F-structures, F_1 and F_2 , such that

(a)
$$F_1^3 + F_1 = 0$$
, (b) $F_2^3 + F_2 = 0$,
(c) $F_1^2 = F_2^2$, (d) $F_3 = F_1 F_2 = -F_2 F_1$ (5)

then M is called an $\{F_1, F_2\}$ – structure manifold with $\{F_1, F_2\}$ – structure. It is proved that [4]:

(a)
$$F_3^3 + F_3 = 0$$
, (b) $F_1 = F_2 F_3 = -F_3 F_2$, (c) $F_2 = F_3 F_1 = -F_1 F_3$, (d) $F_1^2 = F_2^2 = F_3^2$ (6)

If (4) is replaced by

$$F^5 + F_1 = 0 (7)$$

then M is called an F(5,1) – structure manifold with F(5,1) – structure [5].

On an F(5,1) – structure manifold M, the operators

(a)
$$\ell = -F^4$$
, (b) $m = F^4 + I$ (8)

Applied to M_p for each $P \in M$ are complementary projection operators. If rank (F) = r everywhere on M, ℓ and m define two differentiable complementary distributions L and N on M of dimensions r and n-r.

Suppose that V is an h-dimensional submanifold of M with immersion

$$b: V \to M$$
 (9)

Let B be the Jacobian map (B is a linear transformation induced by b) such that a vector field X in V at $P \in V$, $|\rightarrow BX$ in M at $b(P) \in M$. Let C_X , x = 1, 2, ..., n-h be the field of normals to V [6].

2. [F₁,F₂] (5,1)-structure manifold

Definition

Let M be a \mathbb{C}^{∞} n-dimensional manifold on which there are two (5,1)-structures F_i , i =1,2, such that

(a)
$$F_i^5 + F_i = 0$$
, (b) $F_1^2 = F_2^2$
(c) Define $F_3 = aF_1F_2 = -aF_2F_1$ (10)

where
$$a = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sqrt{-1}$$
 (i.e. $a^4 = -1$). The we say

that we have an $[F_1,F_2]$ (5,1)-structure manifold with $[F_1,F_2]$ (5,1)-structure.

Theorem 1

Let M be an $[F_1,F_2](5,1)$ – structure manifold. Then

(a)
$$F_3^5 + F_3 = 0$$
 (b) $F_1^4 = F_2^4 = F_3^4$
(c) $F_2 = aF_3F_1 = -aF_1F_3$, $F_1 = aF_2F_3 = -aF_3F_2$
(d) $F_1^2 = F_2^2 = F_3^2$ (1)

Proof

Using (10) (a) and (c) we have

$$\begin{split} F_3^5 &= a^5 (F_1 F_2)^5 = -a \big[F_1 F_2 F_1 F_2 F_1 F_2 F_1 F_2 F_1 F_2 \big] \\ &= -a \big[F_1^2 F_2 F_1 F_2 F_1 F_2 F_1 F_2^2 \big] = a \big[F_1^3 F_2 F_1 F_2 F_1 F_2^3 \big] \\ &= a \big[F_1^4 F_2 F_1 F_2^4 \big] = -a F_1^5 F_2^5 = -a F_1 F_2 = -F_3 \end{split}$$

which is (11) (a)

$$F_1^4 = F_1^2 F_2^2 = F_2^2 F_2^2 = F_2^4$$

$$\begin{split} F_3^4 &= a(F_1F_2)^4 = -\left[F_1F_2F_1F_2F_1F_2F_1F_2\right] \\ &= \left[F_1^2F_2F_1F_2F_1F_2^2\right] = \left[F_1^3F_2F_1F_2^3\right] = -F_1^4F_2^4 \\ &= -F_1^8 = F_1^4 = F_2^4 \end{split}$$

which is (11) (b)

Using (10) we have

$$F_{1} = -F_{1}^{5} = -F_{1}^{4}F_{1} = -F_{2}^{4}F_{1} = \frac{1}{a}F_{2}^{3}F_{3}$$

$$\Rightarrow aF_{1} = F_{2}^{3}F_{3}$$
(12)

$$aF_{1}F_{3} = aF_{1}^{5}F_{3}^{5} = aF_{1}F_{1}^{4}F_{3}^{4}F_{3}$$

$$= aF_{1}F_{2}^{8}F_{3} = -aF_{1}F_{2}^{4}F_{3} = -F_{3}F_{2}^{3}F_{3} = -F_{3}(aF_{1})$$

$$= -aF_{3}F_{1}$$

$$\therefore F_{1}F_{3} = -F_{3}F_{1}$$
(13)

(13), (10) and (11) (a) give

$$\begin{split} F_3F_1 &= -F_1F_3 = -F_1^5F_3^5 = -F_1F_2^3F_3 = F_1F_2^4F_3 = F_1F_3F_2^4 \\ &= -F_3F_1F_2^4, \end{split}$$

where $F_2^4 F_3 = F_3 F_2^4$

$$\therefore F_3 F_1 = -F_3 F_1 F_2^4 \tag{14}$$

But
$$F_2 = -F_2F_2^4$$
 (15)

(14) and (15) suggest that $F_2 = kF_3F_1$, k being a constant

$$F_2^4 = \mathbf{k}^4 (F_1 F_3)^4 = \mathbf{k}^4 F_1^4 F_3^4 = \mathbf{k}^4 F_2^8 = -\mathbf{k}^4 F_2^4$$

 $\therefore \mathbf{k}^4 = -1 = a^4.$

Put
$$F_2 = aF_3F_1 = -aF_3F_3$$
 (16)

Similarly we can prove that

$$F_2F_3 = F_3F_2$$
, and we have

$$F_1 = aF_2F_3 = -aF_3F_2$$

Which is (11) (c)

Premultiplying $F_3 = aF_1F_2$ by F_3 we get, from (16)

$$F_3^2 = \alpha F_3 F_1 F_2 = F_2^2$$

which give us (11) (d).

Theorem 2

On an $[F_1,F_2]$ (5,1) – structure manifold M we have

$$\operatorname{rank}(F_1) = \operatorname{rank}(F_2) = \operatorname{rank}(F_3) \tag{17}$$

Assume that rank $(F_i) = r = \text{constant}$, all over M.

(a)
$$\ell = -F_i^4$$
 (b) $m = F_i^4 + I$ (18)

then

(a)
$$\ell = -F_2^4 = -F_3^4$$
 (b) $\ell = F_2^4 + I = F_3^4 + I$ (19)

This means that we have two differentiable distributions L and N on M.

Proof

From (10) (c) and (11) (c) we have

 $\operatorname{rank}(F_1) \leq \min [\operatorname{rank}(\underline{F_2}), \operatorname{rank}(F_3)]$

 $\operatorname{rank}(F_2) \leq \min [\operatorname{rank}(F_3), \operatorname{rank}(F_1)]$

 $\operatorname{rank}(F_3) \leq \min [\operatorname{rank}(F_1), \operatorname{rank}(F_2)]$

This proves (17) (19) is obvious.

Theorem 3

On an $[F_1,F_2]$ (5,1) – structure manifold, let $J_j=F_j^2$ then we have

(a)
$$F_j \ell = \ell F_j = F_j$$
 (b) $J_j \ell = \ell J_j = J_j$ (c) $J_j^2 \ell = -\ell$
(d) $F_j m = m F_j = 0$ (e) $J_j^2 m = 0$, $j = 1, 2, 3$ (20)

Proof

We have $F_1^4 = F_j^4$. Using $F_j^5 + F_j = 0$, j=1,2,3 We have

$$F_i \ell = F_i F_i^4 = -F_i F_i^4 = -F_i^5 = F_i$$

similarly, we have $\ell F_i = F_i$

This proves (20) (a)

Using (10) (a), and (11) (a) and (b) we have

$$J_j \ell = F_j^2 F_1^4 = -F_j^6 = F_j^2 = J_j$$

similarly we have $\ell J_j = J_j$

This proves (20) (b).

Using (10) (a), (11) (a) and (b), we have

$$J_i^2 \ell = -F_i^4 F_1^4 = -F_i^8 = F_i^4 = -\ell$$

This proves (20) (c).

Using (10) (a) and (11) (a) and (b), we have

$$F_i m = F_i (F_1^4 + I) = F_i^5 + F_i = 0$$

similarly we have $mF_j = 0$. This proves (20) (d). Using (10) (a) and (11) (a) and (b), we have

$$J_i^2 m = -F_i^4 (F_1^4 + I) = F_i^8 + F_i^4 = 0$$

similarly we have $mJ_{j}^{2}=0$

Theorem 4

On an $[F_1,F_2]$ (5,1) – structure manifold M, F_j^2 (j=1,2,3) act on L as almost complex structures and on N as null operators.

Proof

Suppose that $X \in L$ i.e. $\ell X = X$. Then

$$J_1 \ell X = J_1 X = \ell J_1 X$$
, where we used (20) (b).

This means that $J_j X \in L$. We cannot have $J_j X = 0$, because if we have $J_j X = 0$, then $J_j^2 X = 0$ or $-\ell X = 0$, which contradicts our assumption.

(20) (c) states that $J_j^2\ell=-\ell$, this means that J_j act on L as almost complex operators. Suppose that $Y\in N$, i.e. mY=Y. From (20) (b) we have

 $J_j Y = J_j \ell Y = 0$, i.e. J_j act on N as null operators.

Invariant Submanifolds

Theorem 5

Let V be a C^{∞} m – dimensional submanifold of a C^{∞} n-dimensional manifold M, let F_i , i = 1, 2 be

two C^{∞} tensor fields of type (1,1) on M. Write $F_i(BX)$, as the sum of tangential and normal parts, where X is a vector field in V.

$$F_i(BX) = B(f_iX) + P_i^x(X)C_x, \ j = 1,2$$
 (21)

where f_i are two C^∞ tensor fields of type (1.1) on V. Write $F_i(C_x)$ as the sum of tangential and normal parts

$$F_{j}(C_{x}) = -BP_{jx} + \alpha_{jx}^{y}C_{y} \tag{22}$$

Then

$$\begin{split} F_{j}^{2}(BX) &= B(F_{j}^{2}X) + P_{j}^{x}(F_{j}X)C_{x} + P_{j}^{x}(X)F_{j}(C_{x}) \\ &= B(F_{j}^{2}X) + BG_{j1}(X) + H_{j1}^{y}(X)C_{y} \end{split} \tag{23}$$

$$\begin{split} F_{j}^{3}(BX) &= B(f_{j}^{3}X) + P_{j}^{*}(f_{j}^{2}X)C_{x} + P_{j}^{*}(f_{j}X)F_{j}(C_{x}) \\ &+ P_{j}^{*}(X)F_{j}^{2}(C_{x}) \\ &= B(F_{j}^{3}X) + BG_{j2}(X) + H_{12}^{y}(X)C_{y} \end{split} \tag{24}$$

$$\begin{split} F_{j}^{4}(BX) &= B(f_{j}^{4}X) + P_{j}^{x}(f_{j}^{3}X)C_{x} + P_{j}^{x}(f_{j}^{2}X)F_{j}(C_{x}) \\ &+ P_{j}^{x}(f_{j}X)F_{j}^{2}(C_{x}) + P_{j}^{x}(x)F^{3}(C_{x}) \\ &= B(F_{j}^{4}X) + BG_{j3}(X) + H_{j3}^{y}(X)C_{y} \end{split} \tag{25}$$

$$\begin{split} F_{j}^{5}(BX) &= B(f_{j}^{5}X) + P_{j}^{x}(f_{j}^{4}X)C_{x} + P_{j}^{x}(f_{j}^{3}X)F_{j}(C_{x}) \\ &+ P_{j}^{x}(f_{j}^{2}X)F_{j}^{2}(C_{x}) + P_{j}^{x}(f_{j}X)F_{j}^{3}(C_{x}) \\ &+ P_{j}^{x}(X)F_{j}^{4}(C_{x})^{n} \\ &= B(f_{j}^{5}X) + BG_{j4}(X) + H_{j4}^{y}(X)C_{y} \end{split} \tag{26}$$

where $B(F_j^{i+1}X) + BG_{ji}(X)$ and $H_{ji}^y(X)C_y$ are the tangential and normal parts to V respectively. j = 1, 2, i = 1, 2, 3, 4

$$\begin{split} F_{j}^{2}(C_{x}) &= -B(f_{j}P_{jx}) - P_{j}^{y}(P_{jx})C_{y} + a_{x}^{y}F(C_{y}) \\ &= -B(f_{j}P_{jx}) + BT_{j1}(X) + R_{j2}^{y}(X)C_{y} \end{split} \tag{27}$$

$$\begin{split} F_{j}^{3}(C_{x}) &= -B(\int_{j}^{2}P_{jx}) - P_{j}^{y}(\int_{j}P_{jx})C_{y} - P_{j}^{y}(P_{jx})F_{j}(C_{y}) \\ &+ a_{jx}^{y}F_{j}^{2}(C_{y}) = -B(\int_{j}^{2}P_{jx}) + BT_{j2}(X) \\ &+ R_{j2}^{y}(X)C_{y} \end{split} \tag{28}$$

$$\begin{split} F_{j}^{4}(C_{x}) &= -B(f_{j}^{3}P_{jx}) - P_{j}^{y}(f_{j}^{2}P_{jx})C_{y} - P_{j}^{y}(f_{j}P_{jx})F_{j}(C_{y}) \\ &- P_{j}^{y}(P_{jx})F_{j}^{2}(C_{y}) + \alpha_{jx}^{y}F_{j}^{3}(C_{y}) = -B(f_{j}^{3}P_{jx}) \\ &+ BT_{j3}(X) + R_{j3}^{y}(X) = C_{y} \end{split} \tag{29}$$

$$\begin{split} F_{j}^{5}(C_{x}) &= -B(f_{j}^{4}P_{jx}) - P_{j}^{y}(f_{j}^{3}P_{jx})C_{y} - P_{j}^{y}(f_{j}^{2}P_{jx})F_{j}(C_{y}) \\ &- P_{j}^{y}(f_{j}P_{jx})F_{j}^{2}(C_{y}) - P_{j}^{y}(P_{jx})F_{j}^{3}(C_{y}) \\ &+ a_{jx}^{y}F_{j}^{4}(C_{y}) \\ &= -B(f_{j}^{4}P_{jx}) + BT_{j4}(X) + R_{j4}^{y}(X)C_{y} \end{split} \tag{30}$$

where $-B(\int_{j}^{i}P_{jx}) + B.T_{ji}(X)$ and $R_{ji}^{y}(X)C_{ij}$ are the tangential and normal parts to V respectively, i = 1,2,3,4 and j = 1,2.

$$\begin{split} F_1 F_2(BX) &= B(f_1 f_2 X) + P_1^x (f_2 X) C_x + P_2^x (X) F_1(C_x) \\ &= B(f_1 f_2 X) + B S_{12}(X) + U_{12}^y (X) C_u \end{split} \tag{31}$$

$$F_1F_2(BX) = B(f_2f_1X) + P_2^x(f_1X)C_x + P_1^x(X)F_2(C_x)$$

= $B(f_2f_1X) + BS_{21}(X) + U_{21}^y(X)C_y$ (32)

where $BS_{12}(X)$, $BS_{21}(X)$, are the tangential parts and $U_{12}^{y}(X)$, $U_{21}^{y}(X)$ are the normal parts.

Proof

Premultiplying (21) by F_i and using (21) again we get (23).

Premultiplying (23) by F_i and using (21) we get (24). Similarly we can get (25) and (26).

Premultiplying (22) by F_i and using (21) we get (27). Similarly we can get (28), (29) and (30).

From (21) we have

$$F_2(BX) = B(f_2X) + P_2^{x}(X)C_{x}$$

Premultiplying by F_1 and (21) we get (31). Similarly we have (32).

Theorem 6

Let M be an $[F_1 \ F_2]$ (5,1) – structure manifold, then

$$F_j^5 X + f_j(X) + G_{j4}(X) = 0 (33)$$

$$H_{14}^{y}(X) + P_{1}^{y}(X) = 0 (34)$$

$$f_1^2 X - f_2^2 X + G_{11}(X) - G_{21}(X) = 0$$
 (35)

$$H_{11}^{y}(X) - H_{21}^{y}(X) = 0 (36)$$

$$f_1 f_2 X + f_2 f_1 X + S_{12}(X) + S_{21}(X) = 0 (37)$$

$$U_{12}^{y}(X) + U_{21}^{y}(X) = 0 (38)$$

Proof

M is an $[F_1,F_2]$ (5,1) – structure manifold. Then

$$F_i^5(BX) + F_i(BX) = 0$$

From (26) and (21) we have

$$B(f_i^5X) + BG_{i4}(X) + H_{i4}^y(X)C_y + B(f_iX) + P_i^yC_y = 0$$

This gives (33) and (34)

From $F_1^2(BX) = F_2^2(BX)$ we have

$$Bf_1^2X + BG_{11}(X) + H_{11}^y(X)C_y = Bf_2^2X + BG_{21}(X) + H_{21}^y(X)C_y$$

This gives (35) and (36)

From

$$F_3(BX) = \alpha F_1 F_2(BX) = -\alpha F_2 F_1(BX)$$

we have

$$\begin{split} &B(f_1f_2X) + BS_{12}(X) + U_{12}^y(X)C_y \\ &= -B(f_2f_1X) - BS_{21}(X) - U_{21}^y(X)C_y \end{split}$$

This gives (37) and (38)

Theorem 7

Let V be an invariant submanifold of M with respect to both F_i , i = 1, 2. Then

$$F_i^i(BX) = B(f_i^iX), j = 1,2 \text{ and } i = 2,3,4,5$$
 (39)

$$F_{i}^{t}(C_{x}) = -B(f_{i}^{t-1}P_{ix}) + \alpha_{ix}^{y}F^{t-1}(C_{y})$$
(40)

$$F_1F_2(BX) = B(f_1f_2X),$$
 (b) $F_2F_1(BX) = B(f_2f_1X)$ (41)

Proof

That V is an invariant submanifold means that

$$F_{i}(BX) = B(f_{i}X) \Rightarrow P_{i}^{x} = 0, \ j = 1,2$$

This in (23), (24), (25) and (26) give (39) also put $p_j^x = 0$ in (27), (28), (29) and (30) give (40), with j = 1,2 and i = 2,3,4,5. Again if we put $p_j^x = 0$ in (31) and (32) we get (41).

Theorem 8

Let V be an invariant submanifold with respect to both F_i , i=1,2 of an $[F_1,F_2]$ (5,1) – structure manifold M, then

$$f_i^5 + f_i = 0 (42)$$

$$f_1^2 = f_2^2 (43)$$

$$f_1 f_2 = -f_2 f_1 \tag{44}$$

and Vitself is an $[f_1, f_2]$ (5, 1) – structure manifold.

Proof

Putting j = 2 and 5 in (39) and using the fact that

$$F_i^5(BX) + F_i(BX) = 0, i = 1,2$$

and $F_1^2(BX) = F_2^2(BX)$

we get (42) and (43)

$$F_1F_2(BX) = -F_2F_1(BX)$$

(41) gives (44)

Let
$$f_3 = af_1f_2 = -af_2f_1$$
, $a^4 = -1$

We have V itself is an $[f_1, f_2]$ (5, 1) – structure manifold.

References

- Yano K.: Differential Geometry On Complex And Almost Complex Spaces, Pergamon Press N.Y. 1965.
- Ishihara S.: Quaternion Kahler Manifolds, J. Diff. Geom. 9(4), (1974), 433-500.
- Yano K.: On A Structure Defined By A Tensor Field Of Type (1,1) Satisfying F³ + F = 0, Tensor N.S. 14, (1963), 99-109.
- 4. Hashimoto S.: On A Differentiable Manifold M^n Admitting Tensor Fields (F,G) Of Type (1,1) Satisfying $F^3 + F = 0$, $G^3 + G = 0$, FG = -GF, And $F^2 = G^2$. Tensor N.S. 15 (1964), 267-274
- Geuli-Andreou F.: On A Structure Defined by A Tensor Field F Of Type (1,1) Satisfying F⁵ + F = 0. Tensor N.S. 36 (1932), 99-109.
- Hicks N.J.: Notes On Differential Geometry Van Nostrand, Princeton 1965.

Recibido el 15 de Septiembre de 1998 En forma revisada el 10 de Febrero de 1999