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Abstract 

In a preced1ng artlcle we bave lntroduced the Isotoples of tbe differenttal calcuJus and of Newton's 
equatlons of motlon. In tbls second paper we use these resuJts lo construct tbe lsotoples ofanalyt1c and 
quantum mechanlcs. We show that the isotoples of HamUlonian mechanlcs permlt the dertvatlon from 
a flrst-order lsovartatlonal principIe of the most general posslblenonllnear integro-dUferentlal Newton's 
equatlons by provid1ng In particular a representatJon ofthe extended and deformable shape ofthe body 
consldered as well as ofnonlocal-lntegraI and vartationally non-self-adjoint forces. We then ident11Y the 
lsotoples of conventlonal quantization and show that they Jead lo unique and unamblguous lsotoples 
of quantum mechanics capable of preserving all the essential characteristlcs oC tbe or1g1nal lsotoplc 
Newton's equatlons. thus pennJtting the representatJon in the ftxed lnertlal frame of tbe experimenter 
of nonl1near. nonlocaJ and nonhamJJlontan systems, w1th considerable broadenlng of the arena of 
a ppllcabJllty of conventlonaJ formuJatlons. 

Key W'ords: lsotoples. lsolagrangian and IsobamUtontan mechanlcs. hadronJc mechan1cs. 

Levantamiento isotópico de la mecánica analítica 
y cuáIltica 

Resumen 

En un artícuJo anterior introdujimos las lsolopías del cálcuJo dlferencial y de las ecuaciones 
newtonJanas de movImJenlo. En este segundo trabajo utllJzamos estos resultados para construir las 
Isolopías de la mecánica cuántica y analítica. Demostramos que las isolopías de la mecánica 
hamiltoniana permiten la derivación de un pr1nclpio lsovarló.~!onaJ de primer orden de las ecuaciones 
entero-dlferenclaJes no llneales más generales posibles de Newton proporcionando, en particular. una 
representación de la forma extendida y deformada del cuerpo considerado, aJ Igual que de fuerzas no 
locales-Integrales y vartaclonalmente no auto-adjuntas. Luego Identificamos las Isotopías de la 
cuantiftcaclón convencional y demostramos que llevan a tsotopías únicas y no amblgílas de la mecánica 
cuántica que son capaces de preselVar todas las características esencJales de las ecuaciones Isotópicas 
ortginaJes de Newton. permitiendo así la representación en el marco fijo inerte del expertmentador de 
sistemas no lineales. no locales y no hamJJtonlanos. con una ampUaclón considerable del campo de 
apUcabllidad de formulaciones convencionales. 

Palabras claves: lsolopías. mecánJca Isolagranglana e lsohamlltoniana. mecánica hadrónlca. 
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4 Santillt 

1. Statement or the problem. 

In the preceding paper [211 (hereinafter referred as 
Paper 1) we have: reviewed the main elements of 
non linear, nonlocal and nonhamiltonian, yet axiom­

preserv ing maps ca lled isotopies; introduced the 

isodifferentiaI calculus: and constructed the isotopic 
Newton's equilt lOns Or motion. We have then shown 
that these new methods permit the representation of 
the extended and deformable shapes of the particles 

considered as well as of their nonlocal-integral and 

'¡ariationaIly non-self-adjoint interactions (NSA) [7,141 

(ie, interactions violating the integrability conditions 

for the exis tence of a potential). 

In t h ls paper we study the isotopies of 

conventional classical and quantum mechanics. Their 

pnmary motivation is the fOllOWIng. Conventional 

analytic mechanics is der ivable from a fi rst-order 

action principIe either In the fam il iar Lagranglan form 

on ~(t, x, v) = E(t)><E(x,B,R)><E(v,B,R), where E(v,o.R) is the 

tangent space of E(x,o,R). or In the equivalent canonical 

form on S(t.x.p) = E(t)><E(r,B,R)><E(p,o,R), where E(p,B,R) lS 

the cotangent space to E(x,o,R) (see Paper I for aIJ 

notations) 

8J t¡ l, U t. x, v) dt =8J l 
t2 

[ PI< dxk - H(t, x. p) dl ) = 
t 

2
a Jt ¡t [ R°¡,c( bldtf- - H(t.bl dt ) = 0, 

(lIa) 

1,2, .,2N. 

(ubl 

The contemporary formulation of Lagrange equations 

along an actual pat h po are then given by 

d él U t. x, v) él Ut. x. v) }

{ (pO) = 0, 


d t él vI< 


whlle the correspondmg contemporary form of 

Hamllton's equations in the unífied notation b = {b"} = 

(rl<, r\) is 

dbV él H(t. bl 

{ úJ>cv - - -- } (P") = O. (13) 

dt atj-' 

where wflV IS the fami liar exacl canonical symplectic 
tensor 

-IN~N ) 

~xN 
(1.4) 

The fundamental problem addresses in this pa~r 

is that the above analytic equations can only represent a 

rather small class of ewtonian systems in lhe ftxed 
local coordinates. I n fact, the equations can only 

represent Newtonian sys tems which are local ­

differential and selfadjOint, such as our planetary 

systems. More general systems such as the equations of 

motion of a satellite during re-entry in our atmosphere 

(see Paper ¡) are outside the representational capabilities 

of the aboye equations. 

When the restriction to the local chart (t,x,v) or 

(t.x,p) is removed and coord inate transforrnations are 

admitted, principIe (¡. t) can represent all possibte 

analytic and regular non-self-adjoInt Newtonian 

systems in a star-shaped region of the variables, 

provided that they are still local- dtfferen tfal (this IS the 

Lie-Koening theorem [lsI as the analy tic counterpart or 
the Darboux's theorem of the symplect lc geometry 

studied In t he next paperl. 

Even lhough ev idently correct on mathematical/y 

grounds, the ta tter representatíon has senOU5 physlcat 

e!rawbacl<s which prevent lts practical use. F'i rst, the 

t r ansfor mations needed f or the reduc t ion of a 

nonhamil tonian system in t he given f rame to a 

Hamiltonian fonn in another f rame are nonlmear and, 

as such. the coordmates of the equivalent HanlIltonian 

form are not realizable in laboratory. Also, their 

nonlinear it y implies the 1055 of the orig inal iner tial 

character of (he rererence frame wIth consequential 

loss of convenCional re lativttIes (jn ract, the GaJi lei and 

Einstein relati ities are solely applicable to inerlial 

systems, as weJl known, thus preventing the use of the 

Lie-Koenmg ane! Darboux Theoremsl. 

The f undamental problem in analy t ic dynamics 

addressed in this paper i5 therefore the constr uctJon of 

an ana/y t ic representaUon of {he most general possible, 

nonloca!-integral and non-self-adjolnt Newton ian 

systems in {he fixed local charl x representing lhe 

¡nerttal syslem of the experimenter. After lhe 

achievement of th. i5 representation, then the use of the 

transfonnat ion theory may have a physical relevance. 

The fi rst solution of the aboye problem was 
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5 lsotoplc IIftlng of anaJytlc and quantum mechanlcs 

reached by the origlnators of analytlc dynamlcs, 

Lagrange and Hamilton themselves. because they 

formulaled their celebrated equatlons, not in the form 

of current use in the mathematics and physlcs, Eq.s (1.2) 

and (1.3), but that with external terms. 1'he "I rue" 

Lagrange's equations are then givenby [8] 

d aUt, x, v) aUt. x, v) 

{- - - - - F'NS\(t, x, v) }(P")=o 
d t <3 vK 

([ .S) 

whíle the Nlrue" Hamilton 's equations can be wrilten in 

unifled notation [6J 

v 

lit .. db _ d H(t, b) 


( _". - F/SA(t, b) } (pO) = O, 

dt atJll 

(I .6) 

Accordlng to the aboye hislorical conception, lhe 

functions loday called Lagrangian or Hamiltonian 

represenl all polential rorces, while all remalning forces 

are represenled with the external lerms. The aboye 

representation of Newlon's equalíons does indeed verify 

the crucial requirement of occurring in the fixed 

inertlal x- frame of the experlmenter, and the 

construction of the represen tation is simple and 

tmmediate. Unfortunately, analytic equations (I.S) and 

(1.6) are nol general !y deflvable from a variational 

principIe. thus prevenling the use of all related methods, 

such as the optimal con trol theory. Moreover, the 

brackets among two functlOns A(b), B(b) on the 

e tangent bundle characterlled by Hamilton's equations 
wlth externa! terms, 

iiA aB iiB 
(A, B) = - ú.fV - + F11 - , wllV = [( wa¡¡ JI Illv, 

atJll atfabv 

(17) 

violate lhe left scalar and distr ibut ive laws and, as such, 

they do nol characterize any algebra as conventionally 

understood. This impl ies the inapplicability of all 

methods of contemporary physic based on Ue's theory. 

In order lO resolve the lalter problem, Santilll 
[L2,151reformulated brackets (1.7) in the form 

aA a B aB aA a B 
(A, B) -¡Jlv- + r - = - S11V-, 

at:f <3bV ¡.L at:f atf abv 

(¡ .Ba) 

(t.8b) 

which now verify the len and right scalar and 

dlstnbutive laws, thus characterízing an algebra. 
However, brackets (1.8) are not totall y anlísyrnmetric 

and they therefore violate the axioms of Líe algebras In 

favor of the more general Lie-admissible algebras 

identi fled by Albert [Ill.e., the antisymmetric brackets 

[A, BI = (A, B) - (B, A) verify the Ue algebra axioms. It 

then f ollows that the geometry under lying the lalter 
brackets cannol be the symplectic geomelry. because 

requiring a generalization of the calculus of di fferential 

forms which Is no longer totally antisymmetric. We can 

therefore state that the analytlc equat ions according to 

Hamilton's original conceptlon are structurally beyond 

con temporary analytlc, algebraic and geometnc 

methods. 

A solutlon of the fundamental analytlc problem 

here considered which preserves the L/e character of 

the underlying algebra. with consequen ti aJ preservation 

of Its symp/eClic geomelry, was reached by Santlllt In 

monogra ph [ 151 v la a step-by- step iSOlOplC 

generalization of Hamiltonian mechanlcs called, for 

certaln historlcal reasons, Blrkhoffian mechanics. The 

malO idea Is to lift lhe canonlcal actlon pnnclple (1.1 ) 

into the mosl general possible first-order action of the 

Pfarrian [11l t ype 

2
B A = f t( 1 [ I\(b) dtJl! - H(t, b) dt I = O. 

R = (Pk(x, p), Qk(X. p) } , (1 .9) 

whlch charactenzes Blrkhof f's equalions [3l 

dbV <3 H(t, b) } 
{ ~Jb) - -- (pO) = O. (1.1 0) 

d t <3li' 

where 0 IlV is an exact, nowhere degenerate and 
therefore symplectlc tensor al though in its mosl general 

possible realization (see next paper for geometric delai ls) 
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6 Santtll1 

(l.l ll 

A "Theorem of ~¡rec t Universali ty" was 

proved in ref. [1St Sect. 4.5, accord ing to whlch Pfaffian 

actions (1.9) can represenl in a slar- shaped reg ion 

[)fS(t,x,pll al! !X)SSible analytlc, regular and variationally 

non- self-adjo int Newtonian systems (unive r~ality) 

directly in the x- frame of the expenmenter (direct 
universality). 

Birkhoffian mechanics resulted lO be a particular 

isotopy of Hamiltonian meehanlcs because preserving al 

the abstrael level aH original analytie, geometrie and 

algebrale propertles. Most importantly, lhe represen ­

talion via Birk.hofr's equatlons of non-self- adjOint 

systems preserves the Lie eharaeter of lhe underlying 
algebra and the symplectic character or the underlying 

geometry. although expressed in thelr mos! general 

possible regular form [12,151 

The aboye approach permitted the resolution of 

the major drawback. In the use of the historical 

eq ualions (1.6), the loss of Lie's th ory. However. the 

approach has the Iimitation tha t BlrkllOfflan 

mechan ics can onJy reprcscnt Jocal - differenCial 

systems, due to [he strictly local- dlfferentíal charac­
ter of the under lying symplectic geometry. 

Upon achieving the abo e parllal solullon. this 

aulhor (a particle physic ist) was forced to seel< a more 

adequate analytic represenlation of surficlenlly smooth 

and regular. but otherwise arbllrary. l inear and 

nonlinear. loal 31ld non local, self- ad,Pinl and non-self­

adj:lint systems (universality), in lhe fi xed Inertlal frame 

of [he experimenter (direct unl versatltyl. Such a 

c lassica l solulion was necessary for the inillallon of 

quanlltal lve studies on lhe hlslorical opeo legacy due to 

Bloch'inl sev, F'ermi and olh ers thal lhe strong 

mteraclions have a nonlocal-integral component due to 

mutual overlapping of the wavepackets and charge 

dlstributions of hadrons (In fact. all hadrons have 

approxlmately the same size which coincides wlth the 

range of lhe strong Interactlons. thus requiring [he 

necessary condltion of mut ual penetralíon of 
hyperdense particles, result ing In the most general 
I<nown nonlinear Integro ....~1ifferential equations). 

In t!lis paper we present, apparently for lhe firsl 

lime. a solutlon of the fundamental problem herein 

considered along the lalter lines. whlch is permltted by 

the isotopies of the differen tial ca!culus and of 

Newton's equat ions of the preceding Paper 1. The 

50lution iS uniquely and unambiguously characterized 
by N- dimensional isounits of Kadeisvili topological class 

I (sufficiently smooth. bounded, nowhere singular. real 

valued. symmetric and positlve-definite, see Paper [) 

wlth nonlinear and non l ocal-int~gral dependence on 

coordinates X. their derivatives x, x..... with respect to 

an independent variable t and any addltlonal variable 

needed in applicalions. In their diagonal form, the 

isounils can be wrltten 

(1.12) 

where diag. ( 11 1"2, n2- 2• n3- 2 ) represents the shape of lhe 

par ttcle considered and f'(x. x, x. . ..l represen ts Its 

nonllnear. nonlocal and nonhamil tonian interactions. 

Conventional action-at-a-distanee Inleract ions are 

represented via the convenlional potentlal. 

We imtiate our sludies wilh the idenlificalion, also 

done here for lhe first lime. of the condltlons of self­

adjOintness In isospace. and then pass to [he sludy of 
analytic mechanics on isospaees Qver isoflelds. The 

paper ends wlth the idenlification of a sImple. yet 

uniQoe and unamblguous Isotopy of convenllonal 

quantizalion which implles an isotopic lifting of 

quaotum mechanics capable of preserving all original 

characlerislics of the isolople ewton's equations. 

Ineluding nonlocal-integral forces. as desired for novel 

treatments of strong Inleraclions. 

Our analysls 15 strlctly local, owing to the need to 

idenliry methods which are speclfically applicable in 
lhe given inertial frame of the observer. AII results of 

this paper can be easlly extended to isounilS of 

KadeisvllI Class 11 (same property of Class I except that 1 
is negative- definlte) and of Class 111 (union of Class 1 

and I !l. However the extensíon to Classes IV (Class 111 

plus Singular isounits) and V (Class IV plus arbitrary 

isounits. including discontinuous Isounlts) requires 
speclflc sludies. 

2. VariationaJ is0--5elf-adjointness. 

The fundamental meLhods of the 1 nverse 

Newtonian Problem are the conditions of vanational 
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7 IsotoplC llfttng of analyt1c and quantum mechanJcs 

selr-adjolntness in E(tlxE(x,8,R)XE(v,8,R) [7,141. In this 

seclíon we identify the corresponding condlt lons of 
variational iso -self-adjointness In Isospaces over 

Isofields. 

Theorem 1 

A necessary and sume/ent eonditlon for 8 system of 

ordinary sccond- order isodlfferentíal equatlons In 
OO,X,Y) = t::(tXx~(x,~ruxC(Y,M) 

I\a, x, v, a) = 0, 1<= 1, 2, ..~ N, v=ail Ot, a = av / at, 
(2.1) 

which are isod/fferentlable al lease up lo lhe lhlrd 

arder and regular In a regíon O((l,x,vn of points a, x, Y, 
a, aa/al) U.e., det ~f'1 / (¡ál )(()) '" o) lO be varlational/y 

iso-self-adjOint (ISOSA) In () Is lhal 81/ lhe rollowlng 

condllions 

(¡ 1\ a H', 
--- = 2--- = 

(¡ Vi al d ak 

= ~(~ + ~) (2.2b)
al da\( d al 

CJl1 dtk 

(2.2d 

are identicaIly verified In C> . 

The proof is provlded by an efementary Isotopy of 

the conventional case, rer. (14L Theorem 2.1.2, p. 60, and 

consists In computlng the isovariational forms of 
system (2 1). provtng their uniqueness and showlng that 

condllJons (2.2) are necessary and sufflcient ror the 

isovariatlonal forms to coi ncide wl th their adJoint. The 

novefty of condltions (2.2) is ilIustrated by (he following 

Corollary LA 

Systems O{ ordlnary /sod!frerenlfal equaCions 
which are varlatlonal/y iso-self- adjoint in isospace are 
general/y variational non- self-adjolnt when projected 

in ordinary spaces. 

In (act. condilions (2.2) imply no restrictions on 
the isotopic terms t ~i in iSOSpace whlle the same tel1l15 
are restricted by the ordmary conditions of selr­
adp intness in conventlonal spaces. 

Tbeorem 2 

The Isotopic Newton equations ([ .3.5) are varlationally 
iscrself- adjoint. 

Proof. The verificaUon of the fi rSl set of 
condltions (2.2a) reads 

(2.3) 

and lhe same identlties hold for all rematnlng 

conditions. Q.E.D. 

Il is an instructive exercise for lhe Interested 

reader (o work out the IsotOples of the remaining 

theorems for second- order ordinary dlfferential 

equatlons (see [I4L Sections 2.2 and 2.3). 

We now introduce the condt tions of variational 
lso-self- adjomtness ror N-dtmenslonal systems (4.1) in 

an equivalent 2N-dlmensional flrst-order formo Lel 

T'~(x.S.R) be the isocotangent space (seethe next paper 

for a geometric l reatment) whlch m this sectton can be 

characterlzed via the independent space ~(pM\) wlth 

new. independent. covariant coordlnates ~. Le( the total 

representation space be f(t)xf:(x,S,R)xf:(p,&.R) wi th local 

chart ó = (lf') = (i k • ~), 11 = 1, 2, ...• 2N, 1< = l. 2, .. .• N. 

Assign surficlently smooth aM invertible prescr lptions 
ror the characterlzation of lhe new variables í\: 

(2.4) 

with unique system of impllcit functions vk = rica, x, p) 
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8 Santilll 

(see [141. sect. 2-4. for the con entional case). By using 
the latter implicit functions, system (2. ¡) can be written 

in the equivalent 2N-dtmensional rorm 

(2.5) 

Tbeorem3 

A necessary and sufflcJenl condJtJon for syslem 

(2.5) whlch is al leasl twlce isodifferenliable and 

regu lar (del. (CI!)(O) '" O) In a (6N+ ¡)--dimenslonal 

reglon () of points (l, b, e, aCIal) to be lso-self­

adp/nt In R. is thal al/ the fol/owing condllions 

CI!V + Cvl! = O, (2.6.a) 

()CI!V d t vp d Cw. 
--+--+--=0 (2.6b) 

d f>P Hf dbV 
' 

() 0l! d ()v dC:~v 
--+--=-- (2.6c) 

are identical/y satlSfying In O. 
The proof is also a simple iSotopy of (he proof of 

Theorem 2.7.2, p. 87, ref. [ 141. Also, conditlons (2.6) are 

uOlquely derivable from condltions (2.2) when systems 

(2. 1) are assumed lO be 2N-dlmensional and of flrst­
order. The rollowmg property is sel f - evidenl, 

COROLLARY 3.A: When systems (2.5) assume the 

iSOC<Jnonical f orm 

(2.7) 

where wl!V is the convenl/onal canomcal symplectIc 
tensor ( 1.5) the condltions of variat/onal iso-sel(­

adpmtness (2.6) reduce to 

aEl! a:E:¡, 
-----=0. (2 S) 

d bV 
() &' 

Note that a conventional canonical system which 

is se lf- adjolnt is also Iso- self- adjOint, and th is 

i1Iustrates the reason why the potential representation 
of a sel fadjOínt rorces perslsts at the IsotoplC leveJ. 

AdI11t\onal propertles of varlallOnal lso-selr-a(1)jlOtness 
wi ll be Identi fied later on. 

Let us recall the followi ng meanings of the 

condi tions of variatíonal sel f - adjointness for 2N­

dimensional systems of ordlnary first-order differential 
equations (2.5) [14,151 

1) Analyric meaning. The conditions imply the 
direct derivability (¡.e., derivabillty without change of 

local variables or integratlOg factors) of the equatlons 

from a fi rst-order variational princIpIe 

J
t2 

[) A = [) dl [ ~(t. b) dtfL - H( t, b) I = O, (2.9a)
ti 

al! = al atfL, al =a / al ; (2.9b) 

2) Geometric meanlng. The two form 

(2.1 0) 

characterized by Lhe covartant tensor el! Jb) ts 
symplectle; and 

3) Algebralc meaning. The brackets among two 

smooth functions A(bl and B(b) on the cotangent bundle 

( A , B I = (al! Al O'V(b) ( a B ) , ()'V = [( Ca.~ )'", )¡¡JI ,v 

(2. 11) 
are Lie. 

In the next sections we show that the aboye 

properties persist when formulated under isotoples in 
isospaces. 

3. Isotopies of Lagrangian mechanics. 

We now sbow the derlvabtlity of the Isotoplc 
Newton equations from a first- order iso- variatlonal 

principIe and then study the isotopies of Lagrange's (S] 
and Hamllton's [6] mechanics. 

Proposition 1 

A/l Newtonian actlon functIonals of second or 
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9 Isotoplc liftlng of analytic and quantum mechanJcs 

higher order in EucJidean space E: (t)(E:(x,S,R)xE(v,8,R) 

whose integrand is sufficiently smooth and regular In 
a regíon D of the!r variables can a/ways be cdentical1y 

rcwnlten as (trst -arder acUan isa(unclianals in 
isospace 8(i))(~ ( x,S,RJ)(~ (v,M.) which are bilinear in the 

velocilles, 

f t2 
AA;;; l dlf(t, x, v, a. ... ) 

I 

(3Ib) 

In ract, identlties (3. la) are overdetermined 

because, for each given f., there exist infln itely many 

choices of m, t oO' 1'IJ, 0)( and Oo. We shall assume Ihat 

integral terms are admitted In lhe integrand provided 

that they re all embedded in the isomelric. 

The Iso varia t iona I ca/culus is a simple extension 

of the isodlrrereotial calculus. [o ract, we can write the 

fo llowing isovarialion along an admtsslble isodlf­

ferentiable path P 

(3.21 

where we have used Isolntegration by parts. The Isotopy 

01" the celebrated Euler [Si necessary condlllon can be 

formulated as rollows. 

Theorem 4 (Isoeuler necessary condition) 

ti necessary cond/t[on for an Isodlfferentiab/e 

palh Po in Isospace t (t ),xE: (x,~,A. ) xf:(Y,~,It) to be an 

extremal of aetion isofunctiona/ A is Chat all {he 

foJIowtng /sotopic equa/Jons 

a d W,x,v) d c.a,X, v) } 
r (Pd = ( ---- - {PJ = O, 
'"'k d1 d vk ti xk 

(3.3) 

are IdentlcaJ/y vertfled a/ong 1\. 

lt is an instructive exerclse for the In terested 

reader to prove the fOllowing: 

CoroUary 4.A 

lsotopic equations (5.3) are variat ianal1y iso-self­
adpint. 

The isotopies of the remaining aspects of the 

ca lculus of variations (see, e.g., Bl iss [4]) with 

consequen tial isotopies of the optimal contro l theory 

are iotriguing and signl ficant, but they cannot be 

studied here for brevity. Wl1en dealing with the calcu lus 

of isovariations, Eq.s (3.3) will be referred to as isoculer 

equalions, and when dealing with analytic mechanics 

they will be referred to a<; isolagrange equations. 

We shall say that lhe lsotOplC Newton equaLions 
(( .3.5) admlt a direct isoana/ytic representatlon when 

there exists one isolagrangian (.(1, X, v) and related 
isounit 1 under which a1l the fOllowing identltles occur 

a d ta,x,y)
( 

in 

ti Okn, x) aXl aOoQ, x)={m~ -+ } ISOSA= 
. al ti X' al () xl( 

a u,(t, x) dx5 a Uo(l, x)( dv, 
= 1'kl m - - -+ 

di ax-s dt axl 

- F' SA,(t, x, v) ySA = O. (3.4a) 

(3.4b) 

Theorem S (Universality of the 
isolagrangian mechanics) 

AII possib/e sufflc/enLly smo th and regular 

dynamical systems In a star-shaped neighborhood of a 
poinl of their variables a/ways admtt a dírect 

isorepresentation vía the Iso/agrange equations in 

isospace. 
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Proot. The universalíty of the isorepresentatlon 
follows from the fact lhat condltions (1 .3.8) always 

admit solution (1.3.10) in the unknown functions. q.e.d. 
Remark. Newtonian systems are usually 

referred lO systems with local-differential rorces 
depending al most on velocities. Theorem 5 includes 

also non-Newtoman rorces, e.g., rorces of integral type 
or acceleration-dependent. Discontlnuous Newtonian 

rorces, such as lhose of impulsive type, have been 

removed from tlle lheorem because of lacle. of currenl 

knowledge on the topology of isospaces wllh 

discontlnuous isouOlls Osospaces of Kadelsvlli's Class V, 
see Paper 1), although such an extension Is expected lO 

exist, and ils study Is len lo Interested readers. 

Note the slmpllcity of the construction of an 
isolagrangian represenlation as compared to the 

complexity of lhe conslrucllon of a conventional 

Lagranglan represenlalion [14,lsl when It eXists. 

4. Isotopies of Hamiltonian mechanics. 

We now intrOduce, apparently for the firsl lime, 

the lsotopies of the Legendre transform based on the 

iSodifferential calculus. F'or lhis purpose, we intrOduce 

the following Isodlfferentlals in isospace sa, x, pl 
~(t)x~(x.~,~)xe(p,M) 

al = 1°0 dt , a xle = 1'\ dxl , ~ Xl / ~ xl 8'¡ , etc. , 

(4. la) 

(4.lb) 

.... A / ,\A _ J 
(4. le)oP. 0Pj - °1 ' etc. 

The total isounits and isotopic elements of lhe lsospace 

S(t.,x.p) = e(t)xe(x.~A.)XE;(p,M) are lherefore given by 

It should be Indlcated that, 10 vlew of the 

Independence of the variables Pie from i le, we can 

introduce a new isounit 'Il = Z-I for the isospace E;(p.M ) 

which Is dlfferent than the unlt 1 = t - I of Isospace 

e(x.~,ru, m whlch case the total unlt is 12 = diag. (loo' 1. 
'Il). Selection (~ . I b) iS the slmplest possible case wlth 'Il ­
1 which Is recommendable ror the geometric iSOtopies 

studled in the next papero Other allernatlves belong lhe 

the problemOr lhe degrees Or freedom Of the isotopiC 
lheories whlch is not studled at l his time for brevity. 

We now introduce the isocanonical momentum 

via the fo llowing reallzatlon of prescriptions (2.'1 ) 

. 
(.(.3)Pk = 

under t he eonditlon of belOg regular in a (2N+ I)­

dimensional region 1) of points (t, X. p) 

d2(.n. x, v) 
Del. ( --- ) (;) ~ O. 

~Vl~ Vi 

lhus admitting a unique set of impllcit functlons vle = 

rk(t. X, pI. The isolegendre lransform can lhen be 

defined by 

+ ~kn. x) ~ + ~'Ü, xl = A(t, X. pI . (4.5) 

We are now equlpped to study the Isotoples of 

Hamllton's principIe [6). By usmg lhe uOIfled variables ó 
= ( fjll = ( Xk, f>.: J, (:i1 = a fj1 / al , and by lntrOducing 

the notation 

~o = (¡\0¡.1 J = (~.t), I! = 1. 2. ...• 2N, 

k =1, 2. ...• N, (4.6) 

the isocanonical principIe assumes the form along an 

actual path ~o 
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11 lsotoplc lLfttng of anaJyt1c and quantum mechanics 

Theorem 6 (Isohamilton 
Necessary condition) 

A necessary condltlon for an isofunctIOnal In 

ísocanonical form whose integrand is sufficiently 

smooth and regular in a region () of polnts a. ó. e) lQ 

have an extremum alang a palh Po lS Chal all [he 

rollowing lsoequatlOns in dlspint notalion 

a~ 
--= ­
di 

(4.8) 
or In unir/ed nolallon 

d~ov d~o11 ) aóv dAa.ó) A 

( - - - -- ---- = 0 , (4.9) 
dÓvdI]" al off 

hold along an actual path Po' 

It is also inslructive for lhe interested reader to 

prove lhe following: 

Corollary 6.A 

lsotopic equatlons (4.9) are varJalionally iso­

selr-adjOlnt. 

Eq.s (4.8) or (4.9) are called isohami/ton equations 

and can be more simply writLen in lhe following 

covariant and contravarianl forms. respecl lvely. 

d Aa, El) 

~ff 

dAa, Ó) 
(4.IOb) 

where lhe quan til ies 

( 0rNI -I N~N ) , 

INxN ° N><N 

(4.lla) 

0N)(N 'NxN ) 
( w ajl ) 

-I NXN ° NxN ' 

(4 1 lb) 

are the conventíonal covar íant and contravariant 

canon leal tensors, respeclively, which hold in vlew of 

lhe properties or iglnaling from EQ.s (4.1), 

dROvI dÓ" '" aRov / abl'. (4. 12) 

The equivalence of lhe lso lagranglan and 

isohamiltonian equatlons under l he assumed regu lanty 

and invertibi liLy of the Isolegendre lransform can be 

proved as In lhe convenlional case (see. e.g., [14 l Sec t. 

3.8). 

We now study lhe following addltional property of 

Isohamillonlan mechanlcs which is Importanl for 
operator maps. The isotopic Hamilton-Jacobi problem 

(see. e.g.• [Isl p. 201 and fr. ror lhe convenlional case) is 

the identificaUon of an isocanonical transform under 

which the Hamiltonian becomes nul! . The generating 

runcHon or such a t ransform is the isocanonlcal acUon 

itselr, resulting in the end- point contrlbutions 

dA = af t (í'>k axk - Aal ) = IPJ< dxk - A al I t 
ot (4.1'3) 

wilh isotopic Hamlllon-Jacob/ equatlons 

(lA ~Á 
- + Aa.x. p) = 0, - - ~ = °_(4.14) 
dl ~Xk 

plus initial condltions ~Aldx°k. = !>K0 
, where XO and p. are 
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constants. The reader can easily work out the remaimng 

properlies of lhe lsohamillonlan mechanlcs. 

Remark 1. Note the abstracl identity between 

the convenCional and fsotoplc mechanics. Since lhe 

isounits are posltlve-definlte al the abstraet level there 
is no distinction belween dI and at, dx and ax, etc. The 

Isolagrange and 'isohamillon equatiOnS therefore 
coincIde at lhe abslract leve] with lhe conventional 

equalions. This iIIustrates the aXlOm- preserving 

character o( the isotopies, this time, al Ihe analylic 
leve!. 

Remark 2. The direcl unlversallty of lhe 
Isohamlltonlan mechamcs for nonhamiltonian as well as 
nonlocal-lnlegral syslems in Ihe fixed Inertial frame of 
lhe observer should be compared with lhe 
correspondlng lack of uOIversallty or lhe convenUonal 
Hamlllonlan mechanics, as well as wlth lhe lack of 
applicablllly of Blrkhoffian mechaOlcs for non local­
integral syslems, as dlSCussed in Sect. 1. 

Remark 3. The connectlOn belween lhe 
Blrkhoffian and lhe Isohamlltonian mechanics Is 
rnlrtgurng. (n fact, the Pfaffian acllon can always be 

Idenllcally rewritlen as lhe isotoplc acUon 

f t
2 ~(b) dtf- - H(l, b) dI J '" 

ti 

'" J1 
12 ffiO~(b) afil - AO., fl) dI J, ff .. tf A .. H, 
I 

al = dI, (41 5) 

and the general, totally antlsymmelrlc Lle tensor OIJl' 

always admits the factonzation Inlo lhe canonical Lle 
lensor u¡IilI and a regular symmelric matrix 1'/ 

(4.16) 

under which Birkhoff's equations (1.1 0) coincides with 
lhe isohamillon's equallOns (4 IOb) for 10° = 1. As a result, 
Blrkhoffian mechan/es IS a particular case of lhe 
IsohamI/tontan mechanics. 

Despile lhese slmilantles, tl should be Indlcaled 
lhal lhe isohamlltonlan mechanlcs Is considerably 
broader lhan lhe Birkhoffian mechanics. In fact, lhe 
former is based on an aclion of arbllrary order, while 
Ihe lalter necessanly reqUlres a firsl -order action. Also, 

lhe forroer can represen! inlegral rorces, whlle lhe 

laller cannot (because the underlymg geometry, lhe 

sympleclic geometry in its mostgeneral possible exact 

realizationl on ly admils local-dl fferenlial systems. 

F'inally, the former is based on a broader mathematics, 

the isodlfferential calculus, while the latler Is based on 

conventlonal mathematics. 
Remark 4. Note thal the isotopic Hamllton­

Jacobl equations {4.14l imply the propertles 

(4.17) 

which are necessary for a correel lsotopy of 
quantlzallon studled in lhe nexl section and in the next 
paper (olherwise, lhe "wavefunctions" would depend 
also on Ihe momenla, ¡js = Mi, x, f>, lhus being 
topologlcally lOequivalenl lo lhe quanlum mechanlcal 
wavefunclions ¡js(t, xl) 

By comparlson, Pfaffian prinCipie (1.9) Implles lhe 
foltowing Birkhofflan Hamilton-JacObi equalIons 
(studied In detall 10 [¡5D 

aA 
-
at 

+ H(l, X, p) = O, 

aA 
-
axk 

- Pk(x, p) O, (-4.18b) 

aA 
- - Qk{x, p) = O, (4.1Sc) 
aPk 

ror which aA/aPl: ?f O. As a result, Birkhoffian 
mechanlcs is nOI a sUltable classical foundation for lhe 
Isoloples of quanlum mechanlcs. Thls illustrates an 
addltlonal reason why, arter conslrucllng lhe 
Blrkhoffian generalizatlon of Hamillonian mechanlcs 
[lsL Ihis aUlhor had lo search for an additional, more 
sullable generalizallon. 

Remark S. An importanl appllcallon of lhe 
isohamlllonlan mechamcs is lo provide a novel classlcal 
reallzatlon of lhe Lie-Santilll isOlheory (Paper 1). Recall 
lhal lhe conventional classical reahzallon of the Lle 
producl is given by lhe familiar Polsson brackels among 
two functtons A(b) and B(b) In Ihe colangenl bundle, 

aA aB as aA 
[A, B]PolSSOn = ---­ ---- = 

axK 0PJc 
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13 Isotoplc llftlng of analytlc and quantum mechanlcs 

aA aB 
=-- ¡J1v (4.1 9) 

obvoff 

From the self-adjOintness of Birkhoff's equations 

[ 151 and the algebraic meaning of the condttions of self­

adjointness recalled In Sect. 2, the most general possible 
(regular, unconslrained) brackets in the cotangent 

bundle verifying the Líe algebra axioms are given by the 

BírkllOrrtan brackets (also called generalized Poisson 
brackets) [ 151 

oA oa 
(A, BlslrkhOr( = -- O~V(b) - -, Ql'v = [( Oajl ti WV 

i1lf" abv 

(4.20) 
The novel brackets int roduced in this paper are 

given by the rollowing brackets arnong lsofunct ions 
Á(ó),9(ó) 

[A, Blrso top!c = ---­
~x"- d~ 

oA as aB aA 
(4.2 1l 

and they formally coincide with the conven tional 

brackets (4.19) when projected in the original space. 

However, one should remember that the underlylng 

geometry ís generalized. In fact, the isotopic brackets 

can be written 

oA aB 
[A, BltsotoplC - A- tl"-(t, r, p, ...! 0k) 

i1x1 dp¡ 

oB aA 
- - A ­ 1¡"-(t, r, p, ...l 8¡¡j -,-. (4.22) 

aXt ap) 

thus showing their dl r rerences wlth !he convent ional 

brackets. Moreover, one should keep in mind from the 

comments fOllowing Eq.s (4.1 ) tllat we have selected the 

simplest possible isotopies for which the Isounits of the 

independent variables i\ and xk are inverse of each 

other. The use or different isounits for Pk and xk 

evldently Implles further dlfferences bet ween the 

isotoplc and conventlonal brackets. 

Remark 6. Note that the LI~ísotopic character 

of brackets (4.19) is assured by the iso-self- adjOintness 

of the isohamilton equations. Note also thal braclcels 

(4.20) do not verlfy the Líe algebra axioms in 

conventional spaces, ev idently because lhe isotopiC 

elements 'tt! are unrestricted. This illuslrales that the 

isotopic theory of this paper verifies the Ue axioms 
only in isospace but not when projected in 

conventional spaces. Thls occurrence should be 

compared to olher realízatlons studled In ref.s [15,191in 

which the Ue axloms are verified in isospace as well as 
in their projeCtion 10 conventional spaces. 

Remark 7. It is also easy to see lhat the 
isohamil tonian mechanics prov ides a classical 
realizat ion of lhe Lie-Sanlill i iSogroups tsee Paper !l. In 
raet, Ihe integrated form of Eq. (4.I Ob) yields the time 
evolution of a quantity Á(t) In isospace 

cA a aA a 
A(i) = exp { t [ - f - - - f -] } A(l)). (4.23) 

ex op ~x ep 

whleh, for the case of a diagonal isotopíc element, can 

be expressed In term of the isoexponentialion (see Paper 
() 

Aa) = (e t <#" (¡¡~Hl a,. 1t Ato) = ( e t w~v (¡¡~Hl 1" a. }1 t Á(t¡) , 

(4.24) 

and It Is a one-dlmenslonal isogroup owlng lO the 

appearance of the lsotoplc matrix t in the exponent. 

5. Isotopies of quantum mechanics. 

The signlflcance of isohamiltonian mechanics 15 also 

illustrated by the fact that ils map under the 

conventlonal (or sympleclic) quantlzatlon /5 not 

quantum mechanlcs, but Instead a broader Isotoplc 

theory submltted by Santllli (13J under the na me of 

hadronic mechanic5 and then studied by various 

authors (see the comprehensive presentatlons [1 9,20D. 

Without entermg Into detalls, it is Important for this 

paper to see that the lsotopic operator lheory preserves 

all the maln features of the isotopic Newton equat lons, 

such as lhe representatlon of nonspherlcal-derormable 

shapes, nonselradjOint forces and nOnlocal-lntegral 
Interactions. 
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Jn this section we study the isotopies of lhe 

simplest possible Quantization, called naive 

quantization, wnlle those of tne symplectic 
Quantization (¡nitiated by Lin [91 wíll be studi~ in lhe 

next section. The naive quantlzation is lhe map of the 

canonical acUon functional in Eq. (¡ .¡) AO -+ - i h Lnq¡(t, 

xl, where 1'1 = I IS the unit of quantum mechanics, wh ich 

maps lhe convenlional Hamlllon-Jacobi equaltons into 
Schrbdinger's equations for the energy and momentum. 

Since the action ÁO is an isotopy of A·, the preceding 
map must also subjected to an Isotopy. Animalu and 
Sanlllll [21 lherefore Inlroduced lhe followlng na/ve 

Isoquanllzat/On 

Á°(t, >¡) -+ - 11Q, p) Ln <w., x), h = l . (s. )) 

where lhe coordlnales are in Isospace,l ís the ísouni t of 
tlle isotopic ewton equatlons wllicll IS here assumed to 
be tndependence from xfor simplicity (see ref. [201 for 
lhe general case). Tlle applicatíon of map {S. 1) to Eq.s 

(4.14) yields; lile isosChr6dinger equatlon In the energy 

(S.2) 

firsl introduced by Myung and Santilli [101 In terms of 
convenlional dlfferenlial calculus, and fonnulated for 
lhe first lime here for lhe isodifferentlal calculus; lhe 
isoschrDdmger equation in (he momentum 

{s. 3) 

nrst ínl roduced by Santilli [161; and lhe related 
fundamental isocommutat lOn rules 

[ 01-1 : Dv J = q, t 51! - 51! t q, = ~v 1 , 

(S. 4) 

a150 origmally due lo Santilli [ I6L Note lhe preservalion 
of lhe conventional symp!ectic structure ~v 

The emergmg operalor slruclure is characterized 
by: 

Il Enveloplng operalor algebra e wlth generic 
elemenls A. e. ... {which are polynomials In x and pl 
called /soa5SOClatlve enve/ope because characterized by 
lhe isoa.ssociative product Á-e =Áts wllh isounlt 1 =-r- I 

originally due to Santilll [131 

2l The isofields ~c..¡)l of isocomplex numbers e, 
or its isoreal particulariZatiOn Rül,+,x) (see pa~r Ir. and 

3) 1'he isohilbert space ~ with isostates ~. ~, .. ., 
and isoinner product over e 

(5.5) 

orlginally submilted by Myung and Santllli [10] (see [191 
for recent studies). 

The isotoples of lhe Heisenberg represenlation 
then yield the /sohelsenberg equatlOn for an observable 
O 

i ao / éll = [O; A 1 = OoO A - A.. O = Ot A - A t O 
(5.6) 

origmally submitted by Santilli [12,131. The operator 
Image of tlle lsobrackels ( ..2 1) ís lllerefore given by 

( K91 = AtB - BtA, (S.7) 

whlch constítute the operator realization of the Lle­
SaÍllilli isoalgebra (see again Paper 1 for references). 

The exponentiated form of Eq.s (S.7) ylelds the 
time evolutlon of Isostales in lerms of 
isoexponentiatlons 

lhus resulting lO be an operator realtzation of the Lie­
SanlJlIi isogroups willl laws 

Ü{W) .. o(w') = O(w+ w'), ü(w) .. O(-w) O (O) = 1. 
(S.9) 

In particular, A is isohermllean and O is tsoun/tary 

on Jt, 1.e., it verlfies lhe laws, 

O.. 01 = O'. O = 1 . (S.10) 

In lhis paper we have shown lhat the isotoples are 
nonlinear, nonlocal and noncanonical maps of a 
convenllonal li near, local and canomcal theory. To 
illustrate lhe axíom-preserving character of the maps, íl 
remai ns lo show lhat Iinearlty, locality and canonicity is 
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regatned In íSOSpaces over lsoflelds. 

Th@ r@gainmg Or lin@arity in isospac@. calh!d 
isolinearity, is readlly establfshed by the fact tha! the 

isotransrormattons x' = Á-x = ÁN. Á E ~ do índeed 

verify the condition in isospace 

whlle their prOjeCliOn in the Original space is nonllnear, 

e.g., x ' = ÁT(x, . ..lx. A;, a result, the theory of 

isooperators on the Isohilbert space Jt over e is also 

isohnear. The regaíning of localitY in lsospaee, ealled 

isolocaJtty, Is establl5hed by Ihe fact that the theory 15 

everywhere local except at .Ihe unit. F'inally, the 

regaining or caooolcity In lsospaee, ealled 

isocanonic/ty, 15 estabhshed by the rael lhat, e.g., lhe 

isoactlon 1.0 coincides wlth the canonical acUon AO al 

the abstraet leve!. 

lo summary, lhe malrix t of the Isotopie Newlon 

equations oC Paper r IS preserved In lIs entirety at the 

operator leve!. ThlS conflrms the capablllty of the 

isolopies of Quantum mechanics (hadronie mechanics 

[13)) of represent IOg nonspherical- deformable shapes. 

nonselfadjoiol rorces and nonlocal-mtegral interactions 

(see 1201 for comprehenslve studles and applications to 

nuclear physics, partlcle phySlcs, astrophyslCS, 

superconductlvity and other fields). 
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