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Abstract

In a preceding article we have Introduced the isotoples of the differential calculus and of Newton's
equations of motion. In this second paper we use these results to construct the isotopies of analytic and
quantum mechanics. We show that the isotoples of Hamiltonian mechanics permit the derivation from
a first-order Isovariational principle of the most general possiblenonlinear integro-differential Newton's
equations by providing in particular a representation of the extended and deformable shape of the body
consldered as well as of nonlocal-integral and variationally non-self-adjoint forces. We then identify the
isotopies of conventional quantization and show that they lead to unique and unambiguous isotopies
of quantum mechanics capable of preserving all the essential characteristics of the original isotopic
Newton's equations, thus permitting the representation in the fixed inertial frame of the experimenter
of nonlinear, nonlocal and nonhamiltonian systems, with considerable broadening of the arena of
applicabllity of conventional formulations.

Key words: Isotoples, isolagrangian and ischamlltonian mechanics, hadronic mechanics.

Levantamiento isotopico de la mecanica analitica
y cuantica

Resumen

En un articulo anterior introdujimos las isotopias del calculo diferencial y de las ecuaciones
newtonianas de movimiento. En este segundo trabajo utilizamos estos resultados para construir las
isotopias de la mecanica cuantica y analitica. Demostramos que las isotopias de la mecanica
hamiltoniana permiten la derivacion de un principio Isovarialional de primer orden de las ecuaciones
entero-diferenciales no lineales mas generales posibles de Newton proporclonando, en particular, una
representacion de la forma extendida y deformada del cuerpo considerado, al Igual que de fuerzas no
locales-integrales y variaclonalmente no auto-adjuntas. Luego Identificamos las Isotopias de la
cuantificacién convencional y demostramos que llevan a Isotopias (inicas y no ambigiias de la mecanica
cuantica que son capaces de preservar todas las caracteristicas esenciales de las ecuaciones isotopicas
originales de Newton, permitiendo asi la representacién en el marco fljo Inerte del experimentador de
sistemas no lineales, no locales y no hamiltonianos, con una ampliacién considerable del campo de
aplicabilidad de formulaciones convencionales.

Palabras claves: [sotopias, mecanica isolagrangiana e Isohamiltoniana, mecanica hadrénica.
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1. Statement of the problem.

in the preceding paper [21] (hereinafter referred as
Paper 1) we have: reviewed the main elements of
nontinear, nonlocal and nonhamittonian, yet axiom-
preserving maps called isotopies, introduced the
isodifferential calculus; and constructed the isotopic
Newton’s equations of motion. We have then shown

that these new methods permit the representation of
the extended and deformable shapes of the particles
considered as well as of their nonlocal-integral and
variationally non-self-adjoint interactions (NSA) [7,14]
(Le, interactions violating the integrability conditions
for the existence of a potential).

in this paper we study the isotopies of
convertional classical and quanturn mechanics. Their
primary motivation is the following. Conventional
analytic mechanics is derivable from a first-order
action principle either in the familiar Lagrangian form
on 3(t, x, v) = E(*E(x,8 R*E(v,3R), where E(v,8R) is the
tangent space of E(x8R), or in the equivalent canonical
form on S{t,x,p) = E(UXE(r,8,RIXE(p,8,R), where E(p,8R) is
the cotangent space to E(x8,R) (see Paper I for all
notations)

£y ] t ‘
bftl L, x, v dt = Sf[l 2[pedxt - Hit, x,platl =

= Sf[ltz[R"u(b) db* - Ht,b)dtl = o,
(1.1a)
R® = (R = (P}, K= L2N§E= L2 2N
(1.1b)
The contemporary formulation of Lagrange equations
along an actual path P® are then given by

d oLl x v AL, x, v)
{ — - Y=o, (2
dt a vk axk

while the corresponding contemporary form of
Hamilton's equations in the unified notation b = (b4} =
{r%, pyt is

db¥ o Hit, b
{u)w,— - — }(P”] =0, (1.3)
dt o+

where w,, is the familiar exact canonical symplectic
tensor

() = (3,8, - 8,K,) o o
Wy ! = A0 Ry = O RIS
hoar oy
(1.4)
The fundamental problem addresses in this paper
is that the above analytic equations can only represent a

rather small class of Newtonian systems in the fixed
local coordinates. In fact, the equations can only
represent Newtonian systems which are local-

differential and selfadjoint, such as our planetary
systems. More general systems such as the equations of
motion of a satellite during re—entry in our atmosphere
(see Paper [) are outside the representational capabilities
of the above equations.

When the restriction to the local chart {t,;x,v} or
{t,x,p} is removed and coordinate transformations are
admitted, principle (L.1) can represent all possible
analytic and regular non-self-adjoint Newtonian
systems in a star—-shaped region of the variables,
provided that they are still locai-differential (this 15 the
Lie-Koening theorem [15] as the analytic counterpart of
the Darboux’s theorem of the symplectic geometry
studied in the next paper).

Even though evidently correcl on mathematically
grounds, the latter representation has serious physical
drawbacks which prevent its practical use. First, the
transformations needed for the reduction of a
nonhamiltonian system in the given frame to a
Hamiltonian form in another frame are nonlinear and,
as such, the coordinates of the equivalent Hamiltonian
form are not realizable in laboratory. Also, (heir
nonlinearity implies the foss of the original inertial
character of the reference frame with consequential
loss of conventional relativities {in fact, the Galilei and
Einstein relativities are solely applicable to inertial
systemns, as well known, thus preventing the use of the
Lie-Koening and Darboux Theorems).

The fundamental problem in analytic dynamics
addressed in this paper is therefore the construction of
an analytic representation of the most general possible,
nonlocal-integral and non-self-adjoint Newtonian

Systems in the fixed local chart x representing the
inertial system of the experimenter. After the
achievement of this representation, then Lhe use of the
transformation theory may have a physical relevance.
The first solution of the above problem was
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reached by the originators of analytic dynamics,
Lagrange and Hamilton themselves, because they
formulated their celebrated equations, not in the form
of current use in the mathematics and physics, Eq.s (1.2)
and (1.3), but that with external terms. The “true”
Lagrange’s equations are then given by (8]

d oLl xv)

dt vk 3 xk

aLit, x, v)

— PSA 1, %, ) JP) =0

(1.5)
while the “true” Hamilton ‘s equations can be written in

unified notation [6]

( db”  JHt, b) T

y— - ~ R E =0,
™ o :

(B 1={Fy0). (18)

According to the above historical conception, the
functions today called Lagrangian or Hamiltonian
represent all potential forces, while all remaining forces
are represented with the external terms. The above
representation of Newton's equations does indeed verify
the crucial requirement of occurring in the fixed
inertial x-frame of the experimenter, and the
construction of the representation is simple and
immediate. Unfortunately, analytic equations (1.5) and
(1.6) are not generally derivable from a variational
principle, thus preventing the use of all related methods,
such as the optimal control theory. Moreover, the
brackets among two functions A(b), B(b) on the
cotangent bundle characterized by Hamilton’s equations
with external terms,

A 3B aB
(A,B) = — +F—, o = [(wgl M,
a8’ g

(1.7

violate the left scalar and distributive laws and, as such,
they do not characterize any algebra as conventionally
understood. This implies the inapplicability of all
methods of contemporary physics based on Lie’s theory.

In order to resoive the latter problem, Santilli
[12,15] reformulated brackets (1.7) in the form

JA 9B oB oA 3B
(A,B) = — ¥ +F“—=—Su” —_—
b+ ob¥ obH Flog apY
(1.82)

P =, s=(e) =
= diag. ( Iywy, Fyo/ H/0py), (1.8b)

which now verify the left and right scalar and
distributive laws, thus characterizing an algebra.
However, brackets (1.8) are not totally antisymmetric
and they therefore violate the axioms of Lie algebras in
favor of the more general Lie-admissible algebras
identified by Albert [1} ie, the antisymmetric brackets
[A, Bl = (A, B) = (B, A) verify the Lie algebra axioms. It
then follows that the geometry underlying the latter
brackets cannot be the symplectic geometry, because
requiring a generalization of the calculus of differential
forms which is no longer totally antisymmetric. We can
therefore state that the analytic equations according to
Harmilton’s original conception are structurally beyond
contemporary analytic, algebraic and geometric
methods.

A solution of the fundamental analytic problem
here considered which preserves the Lie character of
the underlying algebra, with consequential preservation
of its symplectic geometry, was reached by Santilli in
monograph [I15] via a step-by-step isotopic
generalization of Hamiltonian mechanics called, for
certain historical reasons, Birkhoffian mechanics. The
main idea is to lift the canonical action principle (1.1)
into the most general possible first-order action of the
Pfaffian [I1] type

BA = f”tz[Rp(b)dv* - Htbldt] = 0,

R = {Px p),QXx, p, (1.9)

which characterizes Birkhoff’s equations [3]

1) =0, (1.10)

where Q, is an exact, nowhere degenerate and
therefore symplectic tensor although in its most general
possible realization (see next paper for geometric details)
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Qy = %R ~ R, (L11)

A "Theorem of Direct Universality” was
proved in ref. [15] Sect. 45, according to which Pfaffian
actions (1.9) can represent in a star-shaped region

DIS(t,x,p)l all possible analytic, regular and variationally
non-self-adjoint Newtonian systems (universalily)

directly in the x-frame of the experimenter (direct
universality).

Birkhoffian mechanics resulted to be a particular
isotopy of Hamiltonian mechanics because preserving at
the abstract level all original analytic, geometric and
algebraic properties. Most importantly, the represen—
tation via Birkhoff’s equations of non-self-adjoint
systems preserves the Lie character of the underlying
algebra and the symplectic character of the underlying
geometry, although expressed in their most general
possible regular form [12,15]

The above approach permitted the resolution of
the major drawback in the use of the historical
equations (1.6), the loss of Lie’s theory. However, the
approach has the limitation that Birkhoffian
mechanics can only represent local-differential
systerns, due to the strictly local-differential charac—
ter of the underlying symplectic geometry.

Upon achieving the above partial solution, this
author (a particle physicist) was forced to seek a more
adequate analytic representation of sufficiently smooth
and regular, but otherwise arbitrary, linear and
nonlinear, local and nonlocal, self-ad joint and non-self—
adjoint systemns (universality), in the fixed inertial frame
of the experimenter (direct universality). Such a
classical solution was necessary for the initiation of
quantitative studies on the historical open legacy due to
Bloch’intsev, Fermi and others that the strong
interactions have a nonlocal-integral component due to
mutual overlapping of the wavepackets and charge
distributions of hadrons (in fact, all hadrons have
approximately the same size which coincides with the
range of the strong interactions, thus requiring the
necessary condition of mutual penetration of
hyperdense particles, resulting in the most general
known nonlinear integro—differential equations).

In this paper we present, apparently for the first
time, a solution of the fundamental problem herein
considered along the latter lines, which is permitted by

the isotopies of the differential calculus and of
Newton's equations of the preceding Paper [. The
solution is uniquely and unambiguously characterized
by N-dimensional isounits of Kadeisvili topological class
[ (sufficiently smooth, bounded, nowhere singular, real
valued, symmetric and positive-definite, see Paper 1)
with nonlinear and nonlocal-integral dependence on
coordinates x, their derivatives x, X, ..., with respect to
an independent variable t and any additional variable

needed in applications. In their diagonal form, the
isounits can be written

1 = diag. (n;2 0,72 ny2) Mx, %, %, ., (1.12)

where diag. ( 0, n, 2 ny72) represents the shape of the
particle considered and [(x, %, %, ..) represents its
nonlinear, nonlocal and nonhamiltonian interaclions.
Conventional action-at-a-distance interactions are
represented via the conventional potential.

We initiate our studies with the identification, also
done here for the first time, of the conditions of self-
adjointness in isospace, and then pass to the study of
analytic mechanics on isospaces over isofields. The
paper ends with the identification of a simple, yet
unique and unambiguous isotopy of conventional
quantization which implies an isotopic lifting of
quantum mechanics capable of preserving all original
characteristics of the isotopic Newton’s equations,
including nonlocal-integral forces, as desired for novel
treatments of strong interactions.

Our analysis is strictly local, owing to the need to
identilfy methods which are specifically applicable in
the given inertial frame of the observer. All results of
this paper can be easily extended to isounits of
Kadeisvili Class [I (same property of Class I except that 1
is negative-definite) and of Class II1 (union of Class |
and I1). However the extension to Classes IV (Class 11
plus singular isounits) and V (Class IV plus arbitrary
isounits, including discontinuous isounits) requires
specific studies.

2. Variational iso—self-adjointness.

The fundamental methods of the I[nverse
Newtonian Problem are the conditions of variational
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self-adjointness in E(t)XE(x8RIXE(v,8R) [7,14]. In this
section we identify the corresponding conditions of
variational iso-self-adjointness in isospaces over
isofields.

Theorem 1

A necessary and sufficient condition for a system of
ordinary second-order isodifferential equations in
S, x,V) = E<ERBREVHR)

N x,v,a) = 0,k=12.,N v=axwd, a = av/af

2.1)
which are isodifferentiable at least up to the third
order and regular in a region DIt x,V]l of points (, X, v,
a, da/dt) (ie, det 3, / 32! JO) = 0) to be variationally
iso—self-adjoint (ISOSA) in D is that all the following
conditions

a1, o, -
azk  aa '
3, af, a
+ =2— =
3k Y aqA aa
a , af At
e e M (2.20)
&t @ aa
af, an
a &k ax
& o-oatt av ‘aw h
- E—( L al~") (2.20)

at 3 a* oa'

are identically verified inD .

The proof is provided by an elementary isotopy of
the conventional case, ref. [14}, Theorem 2.1.2 p. 60, and
consists in computing the isovariational forms of
system (2.1), proving their uniqueness and showing that
conditions (2.2) are necessary and sufficient for the
isovariational forms to coincide with their adjoint. The
novelty of conditions (2.2) is illustrated by the following

Corollary 1.A

Systems of ordinary isodifferential equations
which are variationally iso-self-adjoint in isospace are
generally variational non-self-adjoint when projected
in ordinary spaces.

In fact, conditions (2.2) imply no restrictions on
the isotopic terms T,/ in isospace while the same terms

are restricted by the ordinary conditions of self-
adjointness in conventional spaces.

Theorem 2

The isotopic Newton equations (1.3.5) are variationally
iso—self-adjoint.

Proof. The verification of the first set of
conditions (2.2a) reads

oF, oF oF, oF,

— — = 'T'm —_— - Tm — =
) oam ! oam

= pRPR S BRI - 4, (23

and the same identities hold for all remaining
conditions. QE.D.

It is an instructive exercise for the interested
reader to work out the isotopies of the remaining
theorems for second-order ordinary differential
equations (see [14], Sections 2.2 and 2.3).

We now introduce the conditions of variational
iso—self-adjointness for N-dimensional systems (4.1) in
an equivalent 2N-dimensional first-order form. Let
T'E(x8,R) be the isocotangent space (seethe next paper
for a geometric treatment) which in this section can be
characterized via the independent space E(p8,R) with
new, independent, covariant coordinates p,. Let the total
representation space be T(UXE(x,8,RxE(p,8,R) with local
chart b= =K plpu=1,2.,28 k=12 ., N
Assign sufficiently smooth and invertible prescriptions
for the characterization of the new variables P,

B = &b %V, (2.4)

with unique system of implicit functions v* = f*({t, %, p)

Rev. Téc. Ing. Univ. Zulia. Vol. 19, No. 1, 1996



Santilli

(see [14], Sect. 2.4, for the conventional case). By using
the latter implicit functions, system (2.1) can be written

in the equivalent 2N=-dimensional form
RGBE = &0 &+ BLD = o,

¢ =ab'/dt. (2.5)

Theorem 3

A necessary and sufficient condition for system
(2.5) which is at least twice isodifferentiable and
regular (det. (C, D) # 0) in a (6N+1)-dimensional
region D of points &, b, ¢, dc/dt) to be iso-self-
adpint in R is that all the following conditions

G + By = 1, (26.)
x, e ae
o B et e = (26b)
o be b ob
3D ap, ¢
e . A (2.6¢)

b o b ot

are identically satisfying in D.

The proof is also a simple isotopy of the proof of
Theorem 2.7.2, p. 87, ref. [14]. Also, conditions (2.6) are
uniquely derivable from conditions (2.2) when systems
(2.1) are assumed to be 2N-dimensional and of first-
order. The following property is self-evident,

COROLLARY 3.A: When systems (2.5) assume the
isocanonical form

A58 = w,& - 0.6 = o, @)

where wy,, is the conventional canonical symplectic
tensor (1.5) the conditions of variational iso-self-
adjointness (2.6) reduce to

25, 2g,

= =0, (2.8)
J B 2B

Note that a conventional canonical system which
is self-adjoint is also iso-seif-adjoint, and this

illustrates the reason why the potential representation
of a selfadjoint forces persists at the isotopic level.
Additional properties of variational iso=self=adjointness
will be identified later on.

Let us recall the following meanings of the
conditions of variational self-adjointness for 2N-
dimensional systems of ordinary first-order differential
equations (25) (14,15}

[) Analytic meaning. The conditions imply the
direct derivability (i.e, derivability without change of

local variables or integrating factors) of the equations
from a first-order variational principle

5 A =8f“[2 QR AP -HL B =0, (29

Gy = 3,R, -8R, D, =3 H-aR,

8, = a/avh 3 =a/at; (2.90)
2) Geometric meaning. The two form

C= deb“/\db" i (2.10)

characterized by the covariant tensor C,/b) is
symplectic; and
3) Algebraic meaning. The brackets among two
smooth functions A(bl and B(b) on the cotangent bundle
(A,B] = (3, AC™b)(3,B), O™ = [{Cpy F1 ¥,
21
are Lie.
In the next sections we show that the above
properties persist when formulated under isotopies in

isospaces.
3. Isotopies of Lagrangian mechanics.

We now show the derivability of the isotopic
Newton equations from a first-order iso—variational
principle and then study the isotopies of Lagrange's [8]
and Hamilton’s [6] mechanics.

Proposition 1

All Newtonian action functionals of second or
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higher order in Euclidean space E(t)xE(x,8,R)<E(v,8,R)
whose integrand is sufficiently smooth and regular in
a region D of their variables can always be identically
rewritten as first-order action isofunctionals in
isospace EM<E(x,8,RIE(WV,8R) which are bilinear in the
velocities,

1 i
[ atxva) = T @i, Bl

L

pmvie, V- OR X8 v - UL =
tmy Ve~ Ot N vE -0, %, (3.10)

In fact, identities (3.1a) are overdetermined
because, for each given &, there exist infinitely many
choices of m, T%, T}, 0, and U, We shall assume that
integral terms are admitled in the integrand provided
that they are all embedded in the isometric.

The isovariational calculus is a simple extension
of the isodifferential calculus. In fact, we can write the
following isovariation along an admissible isodif—
ferentiable path P

; > )
B AP =T, 2at {5k — + bk — L) =
1 e
Lo a A oL
T, 2t —-——® &, (32)
R e

where we have used isointegration by parts. The isotopy
of the celebrated Euler [5] necessary condition can be
formulated as follows.

Theorem 4 (Isoeuler necessary condition)

A necessary condition for an isodifferentiable
path P, in isospace E(t)*E(x8RIXE(V,5R) to be an
extremal of action isofunctional A is that all the
following isotopic equations

: { d 8Ltxv aLE, x V)
Lp) = [ —
L dat 9k ERS

J®9 =0,

(3.3)
are identically verified along P,

It is an instructive exercise for the interested
reader to prove the following:

Corollary 4.A

Isotopic equations (5.3) are variationally iso-self-
adpint.

The isotopies of the remaining aspects of the

caleulus of variations (see, e.g., Bliss [4]) with
consequential isotopies of the optimal control theory
are intriguing and significant, but they cannot be
studied here for brevity. When dealing with the calculus
of isovariations, Eqs (3.3) will be referred to as isoeuler
equations, and when dealing with analytic mechanics
they will be referred to as isolagrange equations.

We shall say that the isotopic Newton equations
(1.3.5) admit a direct isoanalytic representation when
there exists one isolagrangian L{, X, v) and related
isounit1 under which all the following identities occur

{ d LAYV oL, % v) },SOSA
at 3 vk Xk )
v, A0 LY ax

Jlk - s

a0, X } 1SOSA

dt axt dt d XK
dv aul, x)  dx® a Ut x)
R L .
dt ax® dt ax'
’ NS
~ FSAL % v) } b oo, (3.4a)

Ly =4miy -0, OR%V =

= 0,1, % v+ 0, %, (3.4p)

Theorem 5 (Universality of the
isolagrangian mechanics)

All possible sufficiently smooth and regular
dynamical systems in a star-shaped neighborhood of a
point of their variables always admit a direct
isorepresentation via the isolagrange equations in
isospace.
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Proof. The universality of the isorepresentation
follows from the fact that conditions (1.3.8) always
admit solution (1.3.10) in the unknown functions. q.e.d.

Remark. Newtonian systems are usually
referred to systems with local-differential forces
depending at most on velocities. Theorem 5 includes
also non-Newtonian forces, eg., forces of integral type
or acceleration-dependent. Discontinuous Newtonian

forces, such as those of impulsive type, have been
removed from the theorem because of lack of current
knowledge on the topology of isospaces with
discontinuous isounits (isospaces of Kadeisvili's Class V,
see Paper [), although such an extension is expected to
exisl, and its study is left to interested readers.

Note the simplicity of the construction of an
isolagrangian representation as compared to the
complexity of the construction of a conventional

Lagrangian representation [14,15 when it exists.

4. Isotopies of Hamiltonian mechanics.

We now introduce, apparently for the first time,
the isotopies of the Legendre transform based on the
isodifferential calculus. For this purpose, we introduce
the following isodifferentials in isospace S8(t, X, p) =
EREX 3 RHEPSR)

at = 1%dt, 3% =1Tax', 3%'/9% = 8, etc.,

(4.1a)
dp, = T 'dp,,  ap* = 1kdp, {4.1b)
ap,/ 9py = 8, etc. (4.10)

The total isounits and isotopic elements of the isospace
3(t,x,p) = EMEGBREDP,S,R) are therefore given by

1, = diag.(1°,1,T), T, = diag. (TS T1). (42

It should be indicated that, in view of the
independence of the variables p, from X¥, we can
introduce a new isounit W = 2! for the isospace E(p8,R)
which is different than the unit 1 = T~! of isospace
E(x8R), in which case the total unit is 1, = diag. 1%, 1,
W). Selection (4.1b) is the simplest possible case with W =
1 which is recommendable for the geometric isotopies
studied in the next paper. Other alternatives belong the

the problem of the degrees of freedom of the isotopic
theories which is not studied at this time for brevity.
We now introduce the isocanonical momentum
via the following realization of prescriptions (2.4)
AME
pk=_'n—" =ka" k,X), (4‘3)
3 vk

under the condition of being regular in a (2N+|)}-
dimensional region D of points (t, X, p}

L, X, V)
Det.( —————) @ = 0. (44
VoV

thus admitting a unique set of implicit functions V¢ =
r¥(t, X, p). The isolegendre transform can then be
defined by

1, xp +

<>

£, &, 9, % P =y L% D) - 1L %D

+ 0,4 % ¥, %, p) +0 4% = pp*/2m +

+ VX p + TG X = AL P, (45)
We are now equipped to study the isotopies of

Hamilton’s principle [6]. By using the unified variables b

=(BF)={%p ), * = db*/dt, and by introducing
the notation

= (R, ={ped), p=1,2.,2N
k=1L2.,N, (46)

the isocanonical principle assumes the form along an
actual path P,

1,
ba =8 ], R e - ) @) -
}2
- o]y Aw,e - 8 @) =

SR T S )
=].ll al(Spl—éﬁ—'+ &v E*SXE&I—)(RV ‘H](pc)=
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t,  dx* 9py, of apY 2 A, b
I )85, - iy . wita)
dt %, a A
d vk oA a b o A, bl
- l—p—) + —IIP) = —_— W — (4.10b)
dt ! £ b
t 3 o8 where the quantities
I, s — b —ir ar-AdB) =
! 3 e "
( ) ( aﬂuv éReu ) ON"N -iN*N
W ! = T B ’
_]' t OR, GR"u) ab 3R } b b Iyay Omay
BN {aﬁu w & w0l (4112
(47) il ( aR°, B oR°, )—1 ) ( O T
Theorem 6 (Isohamilton b+ ob Iy Oy
Necessary condition) (4.11b)

A necessary condition for an isofunctional in
isocanonical form whose integrand is sufficiently
smooth and regular in a region D of points @, b, ¢) to
have an extremum along a path P, is that all the
following isoequations in disjoint notation

axk oA, x, p) dpy oA, x, p)

dt My at T
(4.8)
or in unified notation

R, AR, . A BARD),

( - —=) —-—"=0, w9
Elig ab¥ dt v
hold along an actual path P,

It is also instructive for the interested reader to
prove the following:

Corollary 6.A

Isotopic equations (4.9) are variationally iso-
self-adjoint.

Eq.s (4.8) or (4.9) are called isohamilton equations
and can be more simply wrilten in the following
covariant and contravariant forms, respectively,

are the conventional covariant and contravariant
canonical tensors, respectively, which hold in view of
the properties originating from Eq.s (4.1),

3R°, / 3B = aR°, / bk, (4.12)

The equivalence of the isolagrangian and
isohamiltonian equations under the assumed regularity
and invertibility of the isolegendre transform can be
proved as in the conventional case (see, e.g., [14], Sect.
38).

We now study the following additional property of
isohamiltonian mechanics which is important for
operator maps. The isotopic Hamilton-Jacobi problem
(see, e.g., [15] p. 201 and ff. for the conventional case) is
the identification of an isocanonical transform under
which the Hamiltonian becomes null. The generating
function of such a transform is the isocanonical action
itself, resulting in the end—point contributions

ai-af, @ - A = ook - Al

(413
with isotopic Hamilton—Jacobi equations
dA at ) oA ;
+ Ak xp) = 0, — - =0. (414
at Xk

plus initial conditions 8A/0%°% = p,°, where X° and p” are
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constants. The reader can easily work out the remaining
properties of the isohamiltonian mechanics.

Remark 1. Note the abstract identity between
the conventional and isotopic mechanics. Since the

isounits are positive-definite, at the abstract level there
is no distinction between dt and dt, dx and d¥, etc. The

isolagrange and isohamilton equations therefore
coincide at the abstract level with the conventional

equations. This illustrates the axiom-preserving
character of the isotopies, this time, at the analytic
level.

Remark 2. The direct universality of the
isohamiltonian mechanics for nonhamiltonian as well as
nonlocal-integral systems in the fixed inertial frame of
the observer should be compared with the
corresponding fack of universality of the conventional
Hamiltonian mechanics, as well as with the lack of
applicability of Birkhoffian mechanics for nonlocal—
integral systems, as discussed in Sect. 1.

Remark 3. The connection between the
Birkhoffian and the isohamiltonian mechanics is
intriguing. in fact, the Pfaffian action can always be
identically rewritten as the isotopic action

tz _
f : [R,(b) db* - H, b dt] =
= 2R ma6 - A Biatl, Bmbr A=,
dt=at, (4.15)

and the general, totally antisymmetric Lie tensor Q"
always admits the factorization into the canonical Lie
tensor w*¥ and a regular symmetric matrix T

o = 0BT, (4.16)
under which Birkhoff's equations (1.10) coincides with
the isohamilton’s equations (4.10b) for 1.° = 1. As a result,
Birkhoffian mechanics is a particular case of the
isohamiltonian mechanics.

Despite these similarities, it should be indicated
that the isohamiltonian mechanics is considerably
broader than the Birkhoffian mechanics. In fact, the
former is based on an action of arbitrary order, while
the latter necessarily requires a lirst-order action. Also,
the former can represent integral forces, while the

latter cannot (because the underlying geometry, the
symplectic geometry in its most general possible exact
realization) only admits local-differential systems.

Finally, the former is based on a broader mathematics,
the isodifferential caleulus, while the latter is based on
conventional mathematics.

Remark 4. Note that the isotopic Hamilton-
Jacobi equations (4.14) imply the properties

dA°/3P =0, k=1,2.,N, (4.17)

which are necessary for a correct isotopy of
quantization studied in the next section and in the next
paper (otherwise, the “wavefunctions” would depend
also on the momenta, ¢ = (i, X, p, thus being
topologically inequivalent to the quantum mechanical
wavefunctions Yt x)).

By comparison, Pfaffian principle (1.9) implies the
following Birkhoffian Hamilton-Jacobi equations
(studied in detail in [15)

aA

== KL p =0, (4.18a)
at

c (x, p) (4.18b)
—_— = PuX, =0, 418
axk A Y

oA

— - Q4x p) = 0, (4.18¢)
Py

for which 8A/dpy = 0. As a result, Birkhoffian
mechanics is not a suitable classical foundation for the
isotopies of quantum mechanics. This illustrates an
additional reason why, after constructing the
Birkhoffian generalization of Hamiltonian mechanics
(15}, this author had to search for an additional, more
suitable generalization.

Remark 5. An important application of the
isohamiltonian mechanics is to provide a novel classical
realization of the Lie-Santilli isotheory (Paper 1). Recall
that the conventional classical realization of the Lie
product is given by the familiar Poisson brackets among
two functions A(b) and B(b) in the cotangent bundle,

dA @B B A
(A, Blpoisson = N =
a* apy ak  ap,
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dA aB
= — g —
(g ab’

(4.19)

From the self-adjointness of Birkhoff’s equations
[15] and the algebraic meaning of the conditions of self-
adjointness recalled in Sect. 2, the most general possible
(regular, unconstrained) brackets in the cotangent
bundle verifying the Lie algebra axioms are given by the

Birkhoffian brackets (also called generalized Poisson
brackets) [15]

dA aB [ :
(A, Blgrgnorr = —— @*b) ——, o = [(OQ, )W
e ab
(4.20)
The novel brackets introduced in this paper are
given Dy Lhe following brackets among isofunctions

Alb), B(B)

DA 3B 3 dA
[A, Bllsotoplc = 5 3, e 2, -
dA dB oB dA

= — A o - (4.21)
axk  apy X apy

and they formally coincide with the conventional

brackets (4.19) when projected in the original space.

However, one should remember that the underlying

geometry is generalized. In fact, the isotopic brackets
can be written

0A aB
(A, Blisotope = —TtLrp ) 8y —
ax, ap,
aB 0A
R === T,k(l, rp..) By " (4.22)
ax; ap,

thus showing their differences with the conventional
brackets. Moreover, one should keep in mind from the
comments following Eq.s (4.1) that we have selected the
simplest possible isotopies for which the isounits of the
independent variables p, and x* are inverse of each
other. The use of different isounits for p, and x*
evidently implies further differences between the
isotopic and conventional brackets.

Remark 6. Note that the Lie-isotopic character

of brackets (4.19) is assured by the iso-self-adjointness
of the isohamiiton equations. Note also that brackets
(4.20) do not verify the Lie algebra axioms in
conventional spaces, evidently because the isotopic
elements T,! are unrestricted. This illustrates that the
isotopic theory of this paper verifies the Lie axioms
only in isospace but not when projected in
conventional spaces. This occurrence should be
compared to other realizations studied in ref.s [15,19] in
which the Lie axioms are verified in isospace as well as
in their projection in conventional spaces.

Remark 7. It is also easy to see that the
isohamiltonian mechanics provides a classical
realization of the Lie-Santilli isogroups (see Paper I). In

fact, the integrated form of Eq. (4.10b) yields the time
evolution of a quantity A®) in isospace

H 2 )
AD = exp{t[—T— - —1—]) A0, 42
9  op ox p

which, for the case of a diagonal isotopic element, can
be expressed in term of the isoexponentiation (see Paper
1

AW = (25 %% 1 a0) = (2 ARTA ) A
(4.24)

and it is a one-dimensional isogroup owing to the
appearance of the isotopic matrix T in the exponent.

5. Isotopies of quantum mechanics.

The significance of isohamiltonian mechanics is also
illustrated by the fact that its map under the
conventional (or symplectic) quantization is not
quantum mechanics, but instead a broader isotopic
theory submitted by Santilli [13] under the name of
hadronic mechanics and then studied by various
authors (see the comprehensive presentations [19,20).
Without entering into details, it is important for this
paper to see that the isotopic operator theory preserves
all the main features of the isotopic Newton equations,
such as the representation of nonspherical-deformable
shapes, nonselfadjoint forces and nonlocal-integral
interactions.
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In this section we study the isotopies of the
simplest possible quantization, called naive
quantization, while those of the symplectic
quantization (initiated by Lin [9] will be studied in the
next section. The naive quantization is the map of the
canonical action functional in Eq. (1.1) A° = =i b Lnyt,
x), where h = | is the unit of quantum mechanics, which
maps the conventional Hamilton-Jacobi equations into
Sehrddinger’s equations for the energy and momentum.
Since the action A° is an isotopy of A°, the preceding
map must also subjected to an isotopy. Animalu and

Santilli [2| therefore introduced the following naive
{soquantization

At - -iltpLndt,x, bh=1, 5.1

where the coordinates are in isospace, 1 is the isounit of
the isotopic Newton equations which is here assumed to
be independence from X for simplicity (see ref. (20] for

the general case). The application of map (5.1) to Eq.s
(4.14) yields: the isoschrodinger equation in the energy

io¢/at = AT = A+§, (5.2)

first introduced by Myung and Santilli [10] in terms of
conventional differential calculus, and formulated for
the first time here for the isodifferential calculus; the
isoschrodinger equation in the momentum

B Th = el = —id4/0%%, (5.9

first introduced by Santilli [16}; and the related
fundamental isocommutation rules

[B,:6,1 = 8, T8, - 5,18, = w, 1,
b = (R Py 5.4

also originally due to Santilli [16]. Note the preservation
of the conventional symplectic structure Wy

The emerging operator structure is characterized
by:

1) Enveloping operator algebra & with generic
elements A, B, ... (which are polynomials in % and p)
called isoassociative envelope because characterized by
the isoassociative product A+8 = ATB with isounit1 = 1!

originally due to Santilli [13}
2 The isofields 0lc,+%) of isocomplex numbers ¢,
or its isoreal particularization Rin,+X) (see paper I} and
9) The isohilbert space B with isostates §. §, ...
and isoinner product over C

<[d> = 1deide Qe+X, (5.5

originally submitted by Myung and Santilli [10] (see [19]
for recent studies).
The isotopies of the Heisenberg representation

then yield the isoheisenberg equation for an observable
0

idg0/dt =[0Al = O+A-AsO=0TA-ATO
(5.6)

originally submitted by Santilli [12,13. The operator
image of the isobrackets (4.21) is therefore given by

[A’Bl = ATB - BTA, (57
which constitute the operator realization of the Lie-

Santilli isoalgebra (see again Paper | for references).
The exponentiated form of Eq.s (5.7) yields the

time evolution of isostates in terms of
isoexponentiations
=0 ={0t)aj = HT) g (5.8)

thus resulting to be an operator realization of the Lie~
Santilli isogroups with laws

OW) = 0(Ww) = O(w+w), OW 0w = 0 = 1.
(5.9)

In particular, A is isohermitean and U is isounitary
on X, ie, it verifies the laws,

0+0! = 0's0 =1. (5.10)

In this paper we have shown that the isotopies are
nonlinear, nonlocal and noncanonical maps of a
conventional linear, local and canonical theory. To
illustrate the axiom-preserving character of the maps, it
remains to show that linearity, locality and canonicity is
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regained in isospaces over isofields.

The regaining of linearity in isospace, called
isolinearity, is readily established by the fact that the

isotransformations X’ = Asx = ATX, A € ¢ do indeed
verify the condition in isospace

As(fsk + msy) =
n*(A+x) + m+(A+y), vimeR Aet, (I

while their projection in the original space is nonlinear,

eg., x * = AT(x, ..)x. As a result, the theory of
isooperators on the isohilbert space 3 over C is also
isolinear. The regaining of locality in isospace, called
isolocality, is established by the fact that the theory is
everywhere local except at the unit. Finally, the
regaining of canonicity in isospace, called
isocanonicity, is established by the fact that, e.g., the
isoaction A® coincides with the canonical action A° at
the abstract level.

In summary, the matrix T of the isotopic Newton
equations of Paper [ is preserved in its entirety at the
operator level. This confirms the capability of the
isotopies of quantum mechanics (hadronic mechanics
[13)) of representing nonspherical-deformable shapes,
nonselfadjoint forces and nonlocal-integral interactions
(see [20] for comprehensive studies and applications to
nuclear physics, particle physics, astrophysics,
superconductivity and other fields).
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