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Abstract

In this paper, some new properties of the Kontorovich-Lebedev and Lebedev-Shalskaya integral
transforms In Ly spaces are established. Some theorems concerning the mappings and inversions in

Lp(Ry) are proved.

Key words: Kontorovich-Lebedev transform, Lebedev-Shalskaya transform, index integrals,

Macdonald function.

Algunas nuevas propiedades de las
transformadas integrales Kontorovich-Lebedev

Resumen

En el presente trabajo se establecen algunas nuevas propledades de las transformadas integrales
Kontorovich-Lebedev y Lebedev-Shalskaya en los espaclos Lp,- . Se comprueban algunos teoremas con
respecto a las representaciones e inverslones en Ly(R,) .
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Introduction

As it is known, the classical one-dimen-
sional integral transforms on half-axis R, are of

the form

gx) = IR Hey)fly)dy, (1)

*

where Hix,y) is some given function (the kernel
of the transform), fly) Is an original in a certain
space of function and g Is the image of the
function fly). All classical integral transforms
may be divided into two classes: the Mellin con-
volution type transforms (or the Fourler type
transforms)

g(x) = JR ko) fiy)dy, (2)

with the kernel H(x.y) = kixy), which is the func-
tion of one variable z = xy and transforms when
the kernel, generally speaking, is essentially the
function of two variables. We will call the last
class of Integral transforms the index one, since
in some known examples of such transforms the
kemel H(x,y) is a special function and variable x
Is its Index (a parameter). We note the most
Important Kontorovich-Lebedev transform [2]

gm=J: K (yfiy)dy. 3

with the Macdonald function K () [4, Vol.2] the
Mehler-Fock transform [6]

900 = [ P putcosh ufiopdy. (4

Rev. Téc. Ing, Univ. Zulla. Vol. 18, No. 3, 1995



292

Yakubovich

with the spherical Legendre function of the first
kind Py jp4n(cosh y) [4, Vol. 3] and the most

general transform pair with the Meljer's G- func-
tion as the kernel [6], which contains the formu-

lae (1.3), (1.4), namely

g(x) = GP*ZQ[ |(bq)v+ix.l o k(ap)}ﬂy)dy (5)

Sx) =—nl§ j:‘c sinh(2n 7)

m-l) _(an)
bnud) _{bno

v+ o -t — (
g(vdr, (6)

g-m.p-n+2
sz q {x

where m. n, p,ge NO<sn<p0<m<quvisa
complex parameter and (ap)=(aj,.ay), (bq) =
(bl""'bq)’ = (ar;i-l) = (_ Qg1575— ap)v =2 (bzﬂ.l) e
(- bmy1.+— by are the parameters of G-func-
tions.

The Kontorovich-Lebedev transform (1.3)
has been investigated In various functional
spaces (see [1], [5]). In this paper we shall con-
tinue both of Its consideration and study of the
related Index transforms in Lp- spaces. Moreover
it will be demonstrated a new technique of their
investigations through the properties of the Pois-
son kernel.

The Kontorovich-Lebedev
transform

Let us consider the Lp- properties of the
following Kontorovich-Lebedev transform

K L, f] <t>=smh(m)J: K fwdy (D)

where 0 <a<n/2, fly)e LyR,), 1< p <. Weshall
develop the L,-properties of the transform (7),
describing the respective space of functions,
which connects with the transform (7). As it is
evident from usual Hélder inequality and from
the asymptotic behaviour of the Macdonald
function

Ky (y) = Olog y), K(y) =
oy IRevlly Re(v) # 0, y—0+, (8)

Ko (y) = O€*NT/(2Y)), Y = + =, ©)

the integral (7) converges absolutely for any
p2 1. Let us consider the space of functions
g(v), which can be represented by the Kontoro-
vich-Lebedev transform, where the respective
function f{y) belongs to L,R,)

K Ly(L)=|g: g9 = [K L, f19), f& LyRy),

O<o<n/2,p21 (10)

We make use of the following estimate for the
Macdonald function Kg(x) from [1] which holds

forallt>0and x>0
(Ko | s cTEL oxs®, (1)

where C s a positive constant and 0 <§ <n/2.
Applying the general Minkowskl Inequallty to the
integral (7), we find that the operator [K L, f] s

bounded mapping from any space Ly(R,),
1 < p<einto the space L(R,), 1 £q <. Indeed,
we have,

K Lo S My gy 1400

1/q
[J: sinh%o 1) | Ky 1 d’t] dy

<G fo | fy) | €Y s

1/q
[J’ (t+ DT Tdr s j 2] T Dgr | dy
<

T
<G IUIIL l<p

(12)

where C; C; are positive constants, § > o. In the
last Inequality we applied additionally the Hélder
Inequallty.

In order to describe the introduced space
K Ly (L) let us consider the following operator

t sinh((m-£)7)
nzx'“ sinh(or)  w9g(DAT, (13)

(9=

where £ € (0,m).
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Theorem 1

For functions g(1) = [K Ly fi(x) which are re-
presented by the Kontorovich-Lebedev transform
(7) with the density fly) € LRy, 1<p<e, the
operator (13) has the following form

sin(g)
nx*
1/2

L 9 (¥=

) r K (0@ +y*~2xy cos(e))
0 (Prf-2xy cos(e)'

where K| (2 is the Macdonald functionwithv = 1.

Proof. Substituting the value of g(t) as the
Kontorovich-Lebedev transform (7) in the for-
mula (13) and changing order of Integration in
the absolute convergent Iterated Integral, we use
the following equality (see integral 2.16.51.8
from [4], Vol. 2)

oy, x>0, (14)

J'; Esinh((r - &) Ky Kyu)dt

T xy sin(e) Kl((*z Y- 2xy cos(®)'/?)
= 2 = 172 (15)
(X° + y° — 2xy cos(g))

and the Fubinl theorem to obtain the repre-
sentation (14).

Theorem 2

Let g(v) = [K Ly f1(0), fy) € L(R,), 1 Sp <o,
Then

S =" g) 0, (16)

where (I” g) (x) is understood as

(I"g) 0 =Lim o, (If 9 0, x>0, (17)

where the limit in (17) is understood in terms of
the norm in Lp Moreover, the limit in (17) exists
almost everywhere on R,.

Proof. The proof of this theorem follows
without difficulties from the definition of the
integral (14). Indeed, after changing variable
Y = (x(cos(g) + t sin(g)), we get the following equal-
ity

E9 0= ] 5~ fotcos)+ tsine)

(cos(e) + t sinE)R(x,te)dt, e e (O,m), (18)

where

HsinE)( @+ 2K (x sine)(Z+1)17?), £2 —ctg(e).

Rig ke {0, t < —ctg(e).

(19)

It 1s not difficult to see from the asymptotic
behaviour of the Macdonald function Kj(2) that
forany te R, xe R,, and € e (0,m) | Rix,t,e) | < C,
where C Is a positive constant that.

lim Rix,te) =1.
e—0+

Further, we use the approximation properties of
1 1
LS|
te the following L,-norm applying the general
Minkowskl inequality, namely

the Poisson kermnel At) = and we estima-

Il (lgg) _f“Lp(R) 5% J’:’ ﬁ Il fix(cos(e) + t sin(e))

(cos(g) + t sin(e))R(x, t,e) — fix) "L‘;R,)dt -0, -0+
(20)

Indeed, due to the estimate from (18)

c 1
Il (I @) “LJR*) <‘7‘t‘ E Z—l‘ || ix(cos(e) + t sin(e))

X (cos(E) + Lt sin(e)) ||1,p(R‘)dt

1 1+]tpt/p
<Clflmyy | %m: Cill Sl ey

1<p<eo, (21)

where C; is a positive absolute constant, from
the Lebesgue theorem and the continuity of the
L,-norm we get the equality (17). The existence
of the limit almost everywhere on R, follows from
the radial property of the Poisson kemnel
A =R]t]) e Ly(Ry.

From estimate (21), in view of (16), the
following Inequality is true

I (IS‘ 9 "Lp(R+) <Gl (I"g) "LP(R*)’
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ge KLu(LP),lSp:-w. (22)

From theorem 2 follows that [K L, f1(t) = 0,fy)
eLy(R), 1 Sp<e iff fly)=0. So, In the space
K L, (L) we can introduce a norm by the equality

I9lkr, a)=000, 9=IKLS1 29

As it Is evident, the space K Ly (Ly) Is a Banach
one with the norm (23) and is isometric to LD

The main theorem of this section describes
the space K L, (L) In term of the operators (13).

Thzorem 3

An arbitrary function g(v) which is defined
on R, and is extended on R as an odd function
belongs to the space K Ly, (L), 1 < p <, and only
if g(vy € L{R,), 1 € r< = and the following condi-
tion holds

Lim, o, (Fg) e L(R). (24)

Proof. The necessity of condlition (24) fol-
lows from the previous theorem 2 and from
estimate (12), Let us prove the sufficlency: Let
g(1) € L{R,), g(t)=—g(-1) and condition (24)
holds. We show that in this case there Is a
function fe L, such that the equality.

g=1KL,[] (25)

holds. From Inequality (22), we conclude that

(I¥g) € L, for each ¢ € (0,m) and we can evaluate
the following composition

(K L, (Ff g)l(r) = sinh(ot 1) J; Ko (I 9) (y)dy. (26)

At least for smooth functions with compact sup-
port on R,, whose set Is dense in L., by substi-
tuting (13) in equality (26) and using the value
of the integral 2.16.33.2 from [4], Vol. 2 after
changing the order of Integration, we find

(K L, (I 90 = g(v) = sinh(0. 7

26-2 ™ ¢ sinh((x — &)b)
T[ZF(E) o sinh(c 1)

E+i(t+ 1) E+i(t—1)
tlmadi

2
g(tdt. (27)

In order to prove the validity of equality (27) for
all g € L, we must prove now the boundedness
of the operator in the right side of (27). But as it
is not difficult to see from the asymptotic formula

for gamma-function the kernel of the integrand
In (27) Is equal to

qe(ﬂ:/'l—a)(f-r)— ®/2|t—t|-¢ t), (L1 e R+ 5 R+ :
ae (0,m/2), € € (o,m). (28)

Hence we have the following estimate

K Ly (I 9ln) | < € €% /2F

xf;e(xﬂ-c—u)r-nﬂll—tllg(t) I(fl.

< Gy M2 [ /2 em a8ty gy 1t (20)
(4]

where the value of § Is taken from the interval
(/2 - a—g,m/2 - ). So from estimate (29) with
the ald of the Hélder Inequality, we get the
boundedness of the operator in the right part of
(27) In the space L, 1 < r< . Now let us evaluate
the limit of the right side of (27), when € — 0+ in
norm of the space L. We begin by representing
the function g.(1) as follows

. L g(t — et)
gﬂ(z}-m‘r 41

1 get-1v ) )
- 2n ‘E gy sb=tad=gu =gy

h(t,T — el,e)d!

where

2° sinh(a 1) sinh((n - £)1)
(e + 1)t sinh(o 1)

3
e+ i(t+1) E+ i(l— 1)
l‘( ) +1)r[ D) +]]‘ .(381)

hit,te) =

X
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From the previous discussion, we conclude that
the function h(t,t.¢) is bounded uniformly for all

parameters r>0, te R, € € (0,n). Moreover, from
the reduction and supplement formulae for gam-
ma-function the following limit relation takes

place

lim hit,7- et.e) = lim hir.et-1e)=1. (32)

£—0+ 0+

Hence we obtain the following estimates for
norms of the functions gy(1), i= 1,2 in the space

L{R,)

1919 ~ 52 e (33)
1L 1
<SH- :
2n '[:, 541
It g(t—etyh(z,T — et,€) — g(t)ll,"(R‘)dl -0, -0+
- T
19260 252l (34)
L ..
“2n 'Lm Eal

x || glet — th(t,e - T-E)‘Q(—T)"er)dt —0,e -0+

Combining (33)-(34) with representation (30)
and applying the Minkowski Inequality for the
norm of a sum of functions, we find that

g(1) — g(-7)
Il gu(v) — g(v) "L,(R) =l g{(v) - “—22(— "Lr(RJ

T
S 960 - 2(2— I r)

+" g‘lg(T) _ﬂ;ﬁ”["‘“{) —)0. £ ‘—)0+. {35)

But, on the other side, since the operator K L, Is
bounded on L,-space, where 1<p<c, there
exists the following limit in L,-norm

Limg oKL, (f g =
KL Lim o (E@l=IKL, fl. (36)

where [= g € L, Since the operator [K Ly(I g)]
converges In the norm L, too, then the limit
functions must coincide almost everywhere on
R,. Thus, from equality (36) we obtain (25).

The Lebedev-Skalskaya
transforms

Now we construct the Lj-theory for Lebe-
dev-Skalskaya transform pairs, which were in-

troduced in [3] following the corresponding re-
sults for the Kontorovich-Lebedev transform in

the section. 2. First, we use the integral repre-

sentation for the Macdonald function as follows,

K0=] ¢ coshyuydu  (37)
0

and further, are have

ReKi 2l = | €M cosh(u/2) costu)du, x50, (38)
0

ImK j2:id%) = jo e X oshW ginh(u/2) sin(t wdu, x0.(39)

where the left parts of the equalities (38)-(39) are
defined as

K; K; ;-
1/24+44%) {ii 1/2-14%) (40)

2t

For further considerations, the following
lemma concerning the uniform estimation by the
variables 1> 0, x> 0 of the kernels (40) will be
useful.

R
{h;} Kyj24a(29 =

Lemma i

For arbitrary § € [0,n/2) and for all 1> 0,
x > 0 the estimate

R v
Hm‘:} me(x)‘ < m@/2)'?% x
(cos(@))!/2ed T oSO 1/2 (41)

holds.

Proof. By analytic properties of the inte-
grand in (38)-(39), we can rewrite these repre-
sentations as
ReK j2.1ix(X =% fme"‘°°$h(memcosh(ﬁ/2)dﬁ. x>0, 42)

{—o0

Sito )
ImK| j24i(X) =% fa._.., e * coshiP)isB sinh(B/2)dB, x> 0,(43)
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It is not difficult to obtain

<e

{Re} K 2462

-;— r_: g cosdCosh() oo b (11/2)dut

=" K j5(x cos(®)) = m/2)l /2 gdrxcosd

x (x cos(8)) 2. (44)

Let us consider the Lebedev-Skalskaya
transforms of type

(L1 = cos(o f {[m} Ky a0y fU)dy.
45)

where O <a<n/2, fly) € LyR,), 1 Sp<e. As It
is evident from the Hélder inequality and from
the asymptotic behaviour of the Macdonald
function (8)-(9), the integral (45) absolutely con-
verges for any p = 1. Let us consider the following
similar spaces of functions g(t) which can be
represented by the Lebedev-Skalskaya trans-
forms, where the respective function f{y) belongs

to Iq;fR +)

Re
uim (Ly) =(g: g = [LS{ind f] (%), fe LRy,
O<oa<n/2, p21. (46)

Making use of Lemma 1 and applying the
general Minkowskl Inequality to the Integral (45),

we obtaln that the operators [Léamf | are
bounded for mappings from the space Ly(R,),
1 < p <. Into the space L(R,), 1 < g< . Indeed,
we have

uuﬁlmflum) rlj(y)l
1/q
(j cosh"(at)l{ }K,lzm(y)y”zlq d‘t] dy

o0 r/q
<C[1gu1ereo® [joem%t] dy < Gl fl,,
1 Sp<es, a7

where Cy, Csare posltive constants and we choo-
sed>o

In order to describe the spaces Iéam Ly
let us consider the following operators

Re|" _ g1/2 4 [~ cosh((r - 2¢)1)
{[m}eg et ,ﬁj; cosh(a)

] K tmgtods, s

where ¢ € (0,n/2).
Theorem 4

Re,

On the functions g(t) = lléulm’ S1(v), which
are represented by the Lebedev-Skalskaya trans-
Jorms (45) with the density fly)e LyR,),
1 < p <, the operators (48) have the following
Jorm

{Re} 900 = ] 7112 S sln(e)

x r KO(‘IXZWZ -2xy cos(2¢) )@ﬂy)d.‘ﬁ’f et S_":;(—El

(x+ y)«nyf\fJ? + Y - 2y cos(Ze)w
dt ,
>(".0 N + yr 2xy cos(2g) Ruydy, x>0

(49)

Proof. Substituting the value of g(1) as a
Lebedev-Skalskaya transforms (45) in formula
(48) and changing order of integration In the
absolutely convergent Iterated Integral, we use
the following integral 2.16.55.2 from [4], Vol. 2

Re
I:cos(m) {Im} Kl /2+‘f(b)

R T
X {Irﬁ} Ky jgselOdt = 7y cosh(a/2)

X (ﬂ(o(z) +

B ; CKl (z)} Z= (b2+ 242be cosh(a))“ 2
(50)

and the Fubini theorem, to get representation
(49).
The analogue of theorem 2 gives the follow-

ing:
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Theorem 5

Re
Lkt =S 10, fve LRy
1< p<es Then

J) = { }g (x) (51)

o
where {lRme} g| (% is understood as

{ﬁs} glea=Llim, g, {ﬁﬁ} glm, x>0 (52
£

and the limit in equality (52) is understood in the
normin Ly, Moreover, the limit in (52} exists almost
everywhere on R,.

Proof. The proof of this theorem follows
respective treatment of integrals (49). Indeed,
after replacement of varlable y=x(cos(2¢)
+ t sin(2¢g)), we get the equality

{lm} alw=11 4

X (cos(2g) + t sin(2¢g)) ﬁ(x,t, g)dt, £ e (0,x/2), (53)

where

Rix.t,e) = 0 sin(e)sin(2e)(cos(2e) + t sin(2g))"1/2

% (t2+ Ky(x sln(2£)(t2+ 1)1/ 2)
. X1 + cos(2e) + t sin(2e))
2 cos(e)Ncos(2¢) + t sin(2e)
x sin(2e)(+ 12K (¢ sin@e)(+ 1)1?), t > —ctg(e),
(54)

Rxr,t.e) = 0, t <—ctgle) . (55)

From the asymptotic behaviour of Macdonald
functions Ky(2), K;(2), for any te R, xe R, and

ee (0,m) ﬁ(x.t. g) | < Cwhere Cls a positive cons-

tant,

lim ﬁ(x,t,s) =1,
e~ O+

Further, we use the approxlmation properties of

the Polsson kernel RAf) =— ——— as In section 2
+

and we estimate the followlng L,-norm applying
the general Minkowski inequality, namely

[ {{:}9 flle(R) nj tz

Il fix(cos(2e) + ( sin(2¢)) (cos(2¢)

+

+tsin2e) R (x.18) - f0 1, (it =0, € = Ox.
(56)

Indeed, due to the estimate

Re|*
I {Im}e 9 "LP(R,) <C| f"Lp(R)y 1<p<es, (57)

where Cls a positive absolute constant, from the
Lebesgue theorem and the continuity of L,
norms we prove equality (52). The existence of
the limit almost everywhere on R, follows from
the radial property of Polsson kemnel
Pt = A t]) € Li(R,). Theorem 5 is proved.

From estimate (57), we have

Re|* Re|”
I {l;}cg gy < CI {m‘:} 9|l ).

ge lgum (Lp), 1< p<e. (58)

st
From theorem 5, it follows that [L‘i,'m fl1(®=0,
S € Ly(Ry), 1S p<eo, iff fly)=0. Thus, in the
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space Léum (Lp) we can introduce a norm by the
equality

Re
gl (L) =111, 9= 1LSImf] (59

As it is evident, the spaces léum (L) are
Banach with the norms (59) and they are Isomet-

ric to Lp

Let us prove the following descriptions of

Re}
the spaces L"i‘ulm (Lp) In term of the operators
(48).

Theorem 6

An arbitrary function g(t) is defined on R,
and even in the R. and odd in the 3—cases when

continued to R, belongs to the spaces '“‘ (L),

l<p<eifandonlyif g(t) e L{R,), 1 £r<eand
the following conditions hold

Lim, o, {ﬁ]} gle LR,. (60)

Proof. The necessity of condition (60) fol-
lows from previous theorem 5 and from estimate
(46). Let wus prove the sufficlency. Let
g(1) € L{R,), g(1) = +tg(-7) and condition (60) hold.
We show that In thls case there is a function
J & L, such that the equality

Re,
g=ILSm f] 61)

takes place. From Inequality (58), we conclude

that {lRe} gle L,, for each £ € (0.n) and we can
€

evaluate the following composition

ug““} { } gllm=

Im
£

00 o
cosh(u) ,[0 [R }"1/2+e:(y)y1 &, {Re} 9|(y)dy.(62)
€

At least for the set of smooth functions with
compact support on R,, which is dense in L, we

substitute the operator (48) in equality (62) and
change order of Integration. We need the values
of the inner integrals, namely

K.t = I Y {lrie]} Ki /244(Y) {Im} K joy)dy =

D)
,29-2 ]_(e+i(2t+1:)+ nrE: 1 -;i(‘t— f) )'
X~ :
i Ie) €+ 1+t
) 2
i I_,(£+l(‘[ 0 l)r(s+l+|(t+t)+])‘
2 2 |
"Te e +(t— 02

(63)

which were obtained using formula 2.16.33.2
from [4], Vol. 2. Thus we represent equality (62)
as follows

ILSS’ {5} gllm=gm=

,[ cosh((m — 28)0)
2’0 cosh(or)

cosh(ot) —; K(t,)g(t)ydL (64)

for € € (0,n/2). In order to prove equality (64) for
all g € L, we must prove the boundedness of the
operator In the right side of (64). But the kernel
of the Integrand in (64) Is equal to
qclrc/'l.-u)({-t)—n/Z|l—1:|-2¢:l) (t1) e R, xR
. L X R,
ae (0,n/2), e (0,1/2). (65)

Now repeating the previous discussions in sec-
tion 2, we prove the boundedness of the operator
In the right side of (64) in the space L,, 1 < r<es,
Hence representing the function g(z) as

G =2 -2-]; r M firet - teydt

2 *‘Lﬁmt Le)dL = g),(1) + Goul1), (66)
B 2+
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where

_ 2° cosh( 1) cosh((n - 2¢)f)
R(t’t’e) © al(e+ 1)t cosh(x §)

e+ it+1) e+it-t+1
x!l‘(——z +1JI‘(—2 ]

From the previous discussions we conclude that
the function fi(t,tg) Is bounded uniformly for all

parameters 1>0,te R, ee (0,1/2). Moreover,

from the reduction and supplement formulae for
gamma-function the following limit relation ta-
kes place

2

lim ﬁ(t,st -18)=1. (67)
50+

Hence as in theorem 3 we obtain the followingt
estimates for the norms of the functions

gi(t), 1= 1,2 in the space L(R,)

-1
19195 52 e,
AL ]
28 P 4]
X g(sl—T)i\l(T.El-‘t.E) ¥ g(—t)llL,‘R)dt — 0, e = 0+(68)

1920~ &2

O e |
<-2_’—Tj—w12+l

x || gtz — etfr.et - I.E)—g(‘t)lll_'m’)dl -0, e > 0+(69)

Combining (68)-(69) with the representation (66)
and applying the usual Minkowskl Inequality for
the norm of sum of functions, we obtain

" gf,(t) =1 gt) "L’(R) = “ ge(t) -

g(v) £ g(-1) I
2 L{R)

<10 7 L 1 e,

+ 1| o) - %) "’-AR.) —0,e- 0+ (70)

But, on the other hand, since the operator
)Rt’

| 1ol
LS,™ is bounded In Ly,-space, where 1 < p<es,
there exists the following limit in L,-norm

o
Limg o, lLSlmm [Re} g|l=
&

Re

o {Rey
u::{,'"" Lim, o {ﬁ; gll=1Ls ™1, (71)

o
where f= [ﬁ:} ge L, Since the operator
£

Re o
[lgalm] {][}g} g |] converges in the norm L;, too,

the limit functions must coinclde almost every-
where on R,. Thus from equality (71) we obtain
(60).
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