Homomorphisms similar to completely contractive homomorphims

Wilson R. Pacheco R.

Departamento de Matemáticas. Facultad Experimental de Ciencias Universidad del Zulia, Apdo. 526. Maracaibo, Venezuela

Abstract

Paulsen has proved that a unital homomorphism from an operator algebra contained in a C^* -algebra is similar to a completely contractive homomorphism if and only if it is completely bounded. In the present note we obtain a different characterization when the operator algebra is separable.

Key words: Homomorphism, similarity, completely contractive.

Homomorfismos similares a homomorfismos completamente contractivos

Resumen

Paulsen ha probado que un homomorfismo unital de un álgebra de operadores contenida en una álgebra-C* es similar a un homomorfismo completamente contractivo si y sólo si es completamente acotado. En la presente nota damos una caracterización distinta cuando el álgebra de operadores es separable.

Palabras claves: Homomorfismo, similaridad, completamente contractivo.

Introduction

Let \mathcal{B} be a C^* -algebra, $\mathcal{A} \subset \mathcal{B}$ an operator algebra and \mathcal{H} a Hilbert space. In [1] it is proved that every unital homomorphism $\rho \colon \mathcal{A} \to \mathcal{L}(\mathcal{H})$ is similar to a completely contractive homomorphism if, and only if, ρ is completely bounded. Moreover, when ρ is completely bounded it is well known that there exist a Hilbert space \mathcal{K} , operators $\mathcal{A}, \mathcal{B} \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ and a representation $\pi: \mathcal{B} \to \mathcal{L}(\mathcal{K})$ such that

$$\rho(a) = A^*\pi(a)B, \forall a \in A$$
 (1)

The purpose of the present note is to prove the following generalization of the above result, and give an answer to the problem of similarity for completely contractive homomorphisms, when A is separable. **Theorem 1.-** Let **B** be a C^* -algebra, $A \subset \mathcal{E}$ a separable operator algebra and **H** a Hilbert space. $\rho: A \to L(H)$ a unital homomorphism. Then ρ is similar to a completely contractive homomorphism if, and only if, there exist a Hilbert space **K**, operators $\mathbf{A}, \mathbf{B} \in L(H, K)$ and one representation $\pi: \mathcal{E} \to L(K)$ such that

$$\inf \left\{ \sum_{i=1}^{\infty} \left\| \rho(\mathbf{a}_i) - \mathbf{A}^* \pi(\mathbf{a}_i) \mathbf{B} \right\|^2 \right\} < \infty$$
 (2)

where the infimum is taken over all countable families linear generators $\{a_i\}$ of \mathcal{A} .

Let H be a Hilbert space, L(H) the algebra of all bounded operators over H, \mathcal{Z} a C^* -algebra with unit and \mathcal{A} a subalgebra of \mathcal{Z} that contains the unit of \mathcal{Z} . Such subalgebras are called **Operator Algebras**. An operator algebra is **separa**

ble if it possesses a countable family of linear generators. Thus, the closure of the spanned subspace by the family is the whole subalgebra.

In the sequel, M_n will denote the n×n matrix over \mathbf{C} and we set $M_n(\mathcal{A}) = M_n \otimes \mathcal{A}$ ($M_n(\mathcal{A})$ can be thought of as subspace of the C^* -algebra $M(\mathbf{Z})$). We will denote by \mathbf{H}^n the direct sum of \mathbf{n} copies of \mathbf{H} , with $\mathbf{n} \in \mathbb{N}$. If $\|\cdot\|$ is the norm of \mathbf{H} , then the norm $\|\cdot\|_n$ of the Hilbert space \mathbf{H}^n is given by

$$\|\tilde{h}\|_{L^{2}}^{2} = \|h_{1}\|^{2} + \|h_{2}\|^{2} + ... + \|h_{n}\|^{2},$$
 (3)

where $\widetilde{h} = (h_1, h_2, \dots, h_n)$

Given a linear map, $\rho: \mathcal{A} \to \mathcal{L}(H)$ for every $n \in \mathbb{N}$ the mapping $\rho_n: M_n(\mathcal{A}) \to \mathcal{L}(H^n)$ is defined as follows:

$$\rho_n((\mathbf{a}_{ij})) = (\rho(\mathbf{a}_{ij})), \text{ for } (\mathbf{a}_{ij}) \in M_n(\mathcal{A}).$$
 (4)

It is known that the sequence $\{\|\rho_n\|_n : n \in \mathbb{N}\}$ is increasing. The map ρ is called **completely** bounded if

$$\sup \{ |\rho_n| : n \in \mathbb{N} \} < \infty; \tag{5}$$

in that case, we will write $\|\rho\|_{cb}$ to denote this supremum. Then $\|\cdot\|_{cb}$ is a norm on the space of all completely bounded maps. If $\|\rho\|_{cb} \le 1$, then we say that ρ is **completely contractive**.

To prove our theorem we give the following lemmas. The norm given in lemma 3 is a modification of that given in the proof of theorem 8.1 of [3].

Let us recursively define the matrices $R_m \in M_n(\mathbb{C})$ with $n = 2^m$ by $R_0 = (1)$ and

$$R_{m+1} = \begin{pmatrix} R_m & R_m \\ R_m & -R_m \end{pmatrix}, \quad (6)$$

for m=0,1,2,...

Lemma 1.- (i) $R_{\rm m}$ is invertible, $R_m^{-1}=2^{-m}R_m$ and therefore $\|R_m\|_n^2=2^m$

(ii) If **H** is a Hilbert space and $\widetilde{h}=(h_1,h_2,...,h_n)_{\in} \textbf{H}^n \text{ and }$

$$\widetilde{k} = (k_1, k_2, \dots, k_n) = R_{\rm m}(\widetilde{h})$$
, then

$$\sum_{i=1}^{n} \|k_i\|^2 = 2^m \sum_{i=1}^{n} \|h_i\|^2 \tag{7}$$

Proof: (i) Obvious, by using inductivety.

(ii) If,
$$\tilde{k} = R_{\rm m} (\tilde{h})$$
, then

$$\begin{split} &\sum_{l=1}^{n} \left\| k_{l} \right\|^{2} = \left\| \widetilde{k} \right\|_{n}^{2} = \left\| R_{III}(\widetilde{h}) \right\|_{n}^{2} \leq \\ &\left\| R_{m} \right\|_{n}^{2} \left\| \widetilde{h} \right\|_{n}^{2} = 2^{m} \sum_{l=1}^{n} \left\| h_{l} \right\| \end{split} \tag{8}$$

Now, $2^m \tilde{h} = R_m(\tilde{k})$, therefore,

$$2^{2m} \|\tilde{h}\|_{n}^{2} = \|2^{m} \tilde{h}\|_{n}^{2} = \|R_{m}(\tilde{k})\|_{n}^{2} \le$$

$$\|R_{m}\|_{n}^{2} \|\tilde{k}\|_{n}^{2} = 2^{m} \|\tilde{k}\|_{n}^{2}$$
(9)

So, dividing by 2m we conclude that

$$\sum_{i=1}^{n} \|k_i\|^2 \ge 2^m \sum_{i=1}^{n} \|h_i\|^2 \tag{10}$$

By (8) and (10) the equality holds.

Lemma 2.-Under the hypothesis of Theorem 1, let $\alpha \in \mathbb{R}$, $\alpha \ge 1$ and set $|\cdot|$ defined by

$$|h|^2 = \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_i) B h_i \right\|^2 + \alpha \sum_{i=1}^{\infty} \|h_i\|^2 : \sum_{i=1}^{\infty} \rho(\mathbf{a}_i) h_i = h \right\} (11)$$

where the infimum is taken over all countable families of linear generators (\mathbf{a}_i) of \mathcal{A} and over all sequences (h_i) of finite support (this means that only a finite number of elements of the sequence is non null). Then $(\mathbf{H}, |\cdot|)$ is a Hilbert space and $|\cdot|$ is equivalent to $|\cdot|$

Proof: Clearly $|zh|^2 = |z|^2 |h|^2$, for all $z \in \mathbb{C}$. Thus,

$$|zh| = |z||h|$$
, (12)

If $h = \sum_{i=1}^{\infty} \rho(a_i)h_i$ and $k = \sum_{i=1}^{\infty} \rho(a_i)k_i$ where $\{\mathbf{a_i}\}$ is any countable family of linear generators of \mathcal{A} , then $h + k = \sum_{i=1}^{\infty} \rho(\mathbf{a_i})(h_i + k_i)$. Therefore $|h + k| \leq \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a_i}) \mathbf{B}(h_i + k_i) \right\|^2 + \alpha \sum_{i=1}^{\infty} \left\| h_i + k_i \right\|^2 \right\}^{1/2}$

$$= \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} + \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} k_{i} \right\|^{2} + \frac{1}{2} \right\}$$

$$= \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} + \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} k_{i} \right\|^{2} + \frac{1}{2} \right\}$$

$$= \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} + \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} k_{i} \right\|^{2} + \frac{1}{2} \right\}$$

$$\leq \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} \right\|^{2} + \alpha \sum_{i=1}^{\infty} \|h_{i}\|^{2} \right\}$$

$$+ \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} k_{i} \right\|^{2} + \alpha \sum_{i=1}^{\infty} \|k_{i}\|^{2} \right\}$$

$$= |h| + |k|$$

where the last inequality is due to the triangular inequality for l_2 . So, we get

$$|h+k| \le |h| + |k| \tag{13}$$

By (12) and (13), it follows that $|\cdot|$ is a seminorm in H.

As ρ is unital, it yields that $h = \rho(I)h + \sum_{i=1}^{\infty} \rho(a_i)0$, where $\{\mathbf{a_i}\}$ is any count-

able family of linear generators of A.

So

$$|h|^2 \le \|\rho(I)Bh\|^2 + \|h\|^2 = \|Bh\|^2 + \|h\|^2$$

Thus,

$$\left|h\right| \leq \left(\left\|\mathbf{B}h\right\|^{2} + \left\|h\right\|^{2}\right)^{1/2} = \left(\left\|\mathbf{B}\right\|^{2} \left\|h\right\|^{2} + \left\|h\right\|^{2}\right)^{1/2} =$$

On the other hand, if $h = \sum_{i=1}^{\infty} \rho(\mathbf{a}_i)h_i$, then

$$\begin{split} \left\|h\right\| &= \left\|\sum_{t=1}^{\mathbb{N}} \rho(\mathbf{a}_{t})h_{t}\right\| = \\ \left\|\mathbf{A}^{*}\sum_{t=1}^{\infty} \pi(\mathbf{a}_{t})\mathbf{B}h_{t} + \sum_{t=1}^{\infty} (\rho(\mathbf{a}_{t}) - \mathbf{A}^{*}\pi(\mathbf{a}_{t})\mathbf{B})h_{t}\right\| \\ &\leq \left\|\mathbf{A}^{*}\right\| \left\|\sum_{i=1}^{\infty} \pi(\mathbf{a}_{i})\mathbf{B}h_{i}\right\| + \\ \sum_{i=1}^{\infty} \left\|\rho(\mathbf{a}_{i}) - \mathbf{A}^{*}\pi(\mathbf{a}_{i})\mathbf{B}\right\| \left\|h_{i}\right\| \\ &\leq \left[\left(\left\|\mathbf{A}^{*}\right\|^{2} + \sum_{i=1}^{\infty} \left\|\rho(\mathbf{a}_{i}) - \mathbf{A}^{*}\pi(\mathbf{a}_{i})\mathbf{B}\right\|^{2}\right)\right] \\ &\left[\left(\left\|\sum_{i=1}^{\infty} \pi(\mathbf{a}_{i})\mathbf{B}h_{i}\right\|^{2} + \sum_{i=1}^{\infty} \left\|h_{i}\right\|^{2}\right)\right]^{1/2} \quad \text{(by Schwarz inequality)} \\ &\leq \left[\left(\left\|\mathbf{A}^{*}\right\|^{2} + \sum_{i=1}^{\infty} \left\|\rho(\mathbf{a}_{i}) - \mathbf{A}^{*}\pi(\mathbf{a}_{i})\mathbf{B}\right\|^{2}\right)\right] \end{split}$$

$$\left[\left(\left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_i) \mathbf{B} h_i \right\|^2 + \alpha \sum_{i=1}^{\infty} \left\| h_i \right\|^2 \right) \right]^{1/2}$$

since $\alpha \ge 1$. Taking infimum over all sequences (h_i) of finite support and all countable families of linear generators (\mathbf{a}_i) of \mathcal{A} such that,

 $h = \sum_{i=1}^{\infty} \rho(\mathbf{a}_i) h$ we gets by (2) and the definition

$$\|h\| \le k\|h\|,$$
where $k = \left(\|\mathbf{A}^*\|^2 + \inf\left\{\sum_{i=1}^{\infty} \|\rho(\mathbf{a}_i) - \mathbf{A}^*\pi(\mathbf{a}_i)\mathbf{B}\|^2\right\}\right)^{1/2}$

where the infimum is taken over all countable families of numbering linear generators $\{a_i\}$ of \mathcal{A} .

By (12), (13) and (15) we conclude that $|\cdot|$ is a norm on \mathbf{H} . Then (14) and (15) show that $|\cdot|$ is equivalent to $|\cdot|$. As in [2] it suffices to show that $|\cdot|$ satisfies the parallelogram law, to prove that the pair $(\mathbf{H}, |\cdot|)$ is a Hilbert space. Indeed,

Let
$$h = \sum_{i=1}^{\infty} \rho(\mathbf{a}_i) h_i$$
 and $\mathcal{H} = \sum_{i=1}^{\infty} \rho(\mathbf{b}_i) \mathcal{H}_i$,

where $\{a_i\}$ and $\{b_i\}$ are any countable families of linear generators of A.

Ther

$$h + h = \sum_{i=1}^{\infty} \rho(\mathbf{a}_i) h_i + \sum_{i=1}^{\infty} \rho(\mathbf{b}_i) h_i$$
 (16)

and

$$h - h = \sum_{i=1}^{\infty} \rho(\mathbf{a}_i) h_i - \sum_{i=1}^{\infty} \rho(\mathbf{b}_i) h_i$$
 (17)

Now, we have

$$||h + h||^2 + ||h - h||^2 \le$$

$$\begin{split} & \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} + \sum_{i=1}^{\infty} \pi(\mathbf{b}_{i}) \mathbf{B} h'_{i} \right\|^{2} + \\ & \alpha \sum_{i=1}^{\infty} \left\| h_{i} \right\|^{2} - \alpha \sum_{i=1}^{\infty} \left\| h'_{i} \right\|^{2} + \\ & \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} - \sum_{i=1}^{\infty} \pi(\mathbf{b}_{i}) \mathbf{B} h'_{i} \right\|^{2} + \\ & \alpha \sum_{i=1}^{\infty} \left\| h_{i} \right\|^{2} - \alpha \sum_{i=1}^{\infty} \left\| h'_{i} \right\|^{2} \\ & = 2 \left(\left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_{i}) \mathbf{B} h_{i} \right\|^{2} + \left\| \sum_{i=1}^{\infty} \pi(\mathbf{b}_{i}) \mathbf{B} h'_{i} \right\|^{2} + \right) \\ & \left(\alpha \sum_{i=1}^{\infty} \left\| h_{i} \right\|^{2} - \alpha \sum_{i=1}^{\infty} \left\| h'_{i} \right\|^{2} \right) \end{split}$$

In the last inequality we used the parallelogram law in K. Taking infimum first over the sequences $\{h_i\}$ and all countable families of linear generators $\{a_i\}$ of \mathcal{A} , for which,

 $h = \sum_{i=1}^{n} \rho(\mathbf{a}_i) h_i$, and, then over the sequences $\{h'_i\}$ and all countable families of linear generators $\{\mathbf{a}_i\}$ of \mathcal{A} , for which, $\mathcal{H} = \sum_{i=1}^{n} \rho(\mathbf{b}_i) h_i$, we get

$$|h + H|^2 + |h - H|^2 \le 2(|h|^2 + |H|^2)$$
 (18)

Let us note that replacing h by h+h' and h' by h-h' in (18) one gets the reciprocal inequality.

Proof of Theorem 1

If $\rho:\mathcal{A}\to L(H)$ is similar to a completely contractive homomorphism $\varphi:\mathcal{A}\to L(H)$, then by Corollary 6.7 in [3], there exists a representation $\varphi:\mathcal{B}\to L(K)$, where K is some Hilbert space that contains H, such that, $\varphi(\mathbf{a})=P\pi(\mathbf{a})\mathbf{i}$, for all $\mathbf{a}\in\mathcal{A}$, where P denotes the orthogonal projection of K onto H and \mathbf{i} is the inclusion from H to K. As $p(\mathbf{a})=\mathbf{S}^{-1}\varphi(\mathbf{a})\mathbf{S}$, for all $\mathbf{a}\in\mathcal{A}$ and for some invertible operator $\mathbf{S}\in L(H)$, it yields,

$$\rho(\mathbf{a}) = \mathbf{S}^{-1}\mathbf{P}\pi(\mathbf{a})\mathbf{i}\mathbf{S}, \forall \mathbf{a} \in \mathcal{A}$$
(19)

Taking $\mathbf{A} = (\mathbf{S}^{-1}\mathbf{P})^*$, $\mathbf{B} = i\mathbf{S}$, the representation π and the space \mathbf{K} , we obtain for all countable families of linear generators $\{\mathbf{a}_i\}$ of \mathcal{A} that,

$$\sum_{i=1}^{n} \left\| \rho(\mathbf{a}_i) - \mathbf{A}^* \pi(\mathbf{a}_i) \mathbf{B} \right\|^2 = 0$$
 (20)

Therefore, the infimum over such families is finite.

Conversely, let $|\cdot|$ be the norm of \boldsymbol{H} as defined in Lemma 2, with $\alpha=1$. Wee will show that with respect to such a norm ρ is a completely contractive map. Indeed, if $h=\sum_{i=1}^{\infty} \rho(a_i)h_i,$ and $\mathbf{a}\in\mathcal{A}$ with $\|\mathbf{a}\|=1$, then

$$\rho(\mathbf{a})h = \sum_{i=1}^{\infty} \rho(\mathbf{a}\mathbf{a}_i)h_i \tag{21}$$

If $\{aa_i\}$ is not a countable family of linear generators of \mathcal{A} . Then this can always be extended to a countable family of linear generators of \mathcal{A} , since, for $\{aa_i\} \cup \{a_i\}$, we have

$$\rho(\mathbf{a})h = \sum_{i=1}^{n} \rho(\mathbf{a}\mathbf{a}_{i})h_{i} + \sum_{i=1}^{n} \rho(\mathbf{a}_{i})0$$
 (22)

Inererore, $\left|\rho(\mathbf{a})h\right|^2 \le \left\|\sum_{i=1}^{\infty} \pi(\mathbf{a}\mathbf{a}_i)\mathbf{B}h_i\right\|^2 + \sum_{i=1}^{\infty} \left\|h_i\right\|^2$

$$= \left\| \pi(\mathbf{a}) \sum_{i=1}^{\infty} \pi(\mathbf{a}_i) \mathbf{B} h_i \right\|^2 + \sum_{i=1}^{\infty} \left\| h_i \right\|^2$$

$$\leq \left\| \sum_{i=1}^{\infty} \pi(\mathbf{a}_i) \mathbf{B} h_i \right\|^2 + \sum_{i=1}^{\infty} \left\| h_i \right\|^2$$
(23)

where the last inequality is due to the fact that $\pi(\mathbf{a})$ is a contraction. Taking the infimum over the sequences $\{h_i\}$ and the countable families of linear generators $\{\mathbf{a_i}\}$ of \mathcal{A} , such that, one gets

$$|\rho(\mathbf{a})h|^2 \le |h|^2 \tag{24}$$

Thus $\rho(a)$ is a contraction in L(H) with respect to the norm $|\cdot|$ on H. Therefore ρ is contractive.

Now, we must prove that $|\rho_n|_n \le 1$ for all $n \in \mathbb{N}$. Since the sequence $(|\rho_n|_n)$ is increasing on \mathbf{H} it suffices to prove that the inequality holds for all $n=2^m$ with $m \in \mathbb{N}$.

First, note that if $\{a_i\}$ is a countable family of linear generators of A, such that,

 $\sum_{i=1} \left\| \rho(a_i) - A^* \pi(a_i) B \right\|^2 < \infty \quad , \ \, \text{then the family} \\ \{ (a_i E_{jk}) : i = 1, 2, \ldots, \text{ and } j, k = 1, 2, \ldots, n \}, \text{ (where } E_{jk} \text{ is the } n \times n \text{ matrix with the unit of } \mathcal{A} \text{ in the } (j,k) \text{-entry and zero elsewhere) generates } M_n(\mathcal{A}). \text{ Moreover,} \\$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{\infty} \left\| p(\mathbf{a}_{i}(\mathbf{E}_{jk})) - \widetilde{\mathbf{A}}^{*} \pi(\mathbf{a}_{i}(\mathbf{E}_{jk})) \widetilde{\mathbf{B}} \right\|^{2} < \infty$$
 (25)

where $\tilde{A} = A \otimes I$ and $= B \otimes I$,

We define the following norm $|\cdot|_1$, for all $h \in H$,

$$\left\|\widetilde{h}\right\|_{1}^{2} = \inf \left\{ \left\| \sum_{i=1}^{\infty} \pi_{n} \left(\widetilde{\mathbf{a}}_{i}\right) \widetilde{\mathbf{B}} \widetilde{h}_{i} \right\|_{n}^{2} + n \sum_{i=1}^{\infty} \left\|\widetilde{h}_{i}\right\|_{n}^{2} : \sum_{i=1}^{\infty} \rho_{n} \left(\widetilde{\mathbf{a}}_{i}\right) \widetilde{h}_{i} = \widetilde{h} \right\}$$
(26)

where the infimum is taken as in Lemma 2, over all countable families of linear generators $[\bar{a}_i]$ of $M_n(\mathcal{A})$, etc. By (26) and Lemma $2 \mid \cdot \mid_1$ makes \mathbf{H}^n into a Hilbert space. Moreover $|\cdot|_1$ is equivalent to $||\cdot||_n$, and by the argument used in the case of \mathbf{H} , it follows that ρ_n is contractive with respect to this norm. To conclude, we will prove that

$$\left|\widetilde{h}\right|_{n} = \left|\widetilde{h}\right|_{I} \ \forall \ \widetilde{h} \in \mathbf{H}^{n} \quad (\text{see}(3))$$

Let $\widetilde{h} = (h_1, h_2, ..., h_n)$ and fix $\varepsilon > 0$. Let $\widetilde{\mathbf{a}}_k = (\mathbf{a}_{ijk})$ and $\widetilde{h}_k = (h_{1k}, h_{2k}, ..., h_{nk})$, be such that, $\widetilde{h} = \sum_{k=1}^{\infty} \rho(\widetilde{\mathbf{a}}_k)\widetilde{h}_k$ and

$$\left| \tilde{h} \right|_{l}^{2} + \varepsilon \ge \left\| \sum_{k=1}^{\infty} \pi_{n}(\tilde{\mathbf{a}}_{k}) \tilde{\mathbf{B}} \tilde{h}_{k} \right\|_{n}^{2} + n \sum_{i=1}^{\infty} \left\| \tilde{h}_{k} \right\|_{n}^{2}$$

$$\text{As } h_{i} = \sum_{k=1}^{\infty} \sum_{i=1}^{n} \rho(\mathbf{a}_{ijk}) h_{jk} \text{, one has }$$

$$\begin{split} \left| \widetilde{h} \right|_{n}^{2} &= \sum_{t=1}^{n} \left| h_{t} \right|^{2} \leq \\ &\sum_{t=1}^{n} \left\| \sum_{k=1}^{\infty} \sum_{j=1}^{n} \pi \left[a_{ijk} \right] \right\|_{jk} \right\|^{2} + \sum_{k=1}^{\infty} \sum_{j=1}^{n} \left\| h_{jk} \right\|^{2} \\ &= \left\| \sum_{k=1}^{\infty} \pi_{n}(\widetilde{a}_{k}) \widetilde{\mathbf{B}} \widetilde{h}_{k} \right\|_{n}^{2} + n \sum_{t=1}^{\infty} \left\| \widetilde{h}_{k} \right\|_{n}^{2} \leq \left| \widetilde{h} \right|_{1}^{2} + \varepsilon \end{split}$$

Therefore,

$$\left|\widetilde{h}\right|_{n}^{2} \leq \left|\widetilde{h}\right|_{I}^{2}$$
(28)

On the other $\tilde{h} = (h_{ij}h_{ij},...,h_{ij})$

$$h_i = \sum_{l=1}^{\infty} \rho(\mathbf{a}_{il}) h_{il}, \qquad (29)$$

be such that, $\left|h_{i}\right|^{2} + \frac{\varepsilon}{n} \geq \left\|\sum_{i=1}^{\infty} \pi(\mathbf{a}_{il})\mathbf{B}h_{il}\right\|^{2} + \sum_{i=1}^{\infty} \left\|h_{il}\right\|^{2}$

As $n = 2^k$, let us consider the matrix $\tilde{c_l}$, given below:

$$\begin{pmatrix}
r_{11}\mathbf{a}_{1l} & r_{11}\mathbf{a}_{1l} & \dots & r_{1n}\mathbf{a}_{1l} \\
r_{21}\mathbf{a}_{2l} & r_{22}\mathbf{a}_{1l} & \dots & r_{2n}\mathbf{a}_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
r_{nl}\mathbf{a}_{nl} & r_{n2}\mathbf{a}_{nl} & \dots & r_{nn}\mathbf{a}_{nl}
\end{pmatrix}$$
(30)

where $(r_{ij}) = R_k$ is the matrix given in Lemma 1. Let $\tilde{h}_i = (h_{ii}, h_{2i}, ..., h_{si})$ and

$$\widetilde{k}_{l} = (k_{ll}, k_{2l}, \dots, k_{nl}) = R_{m} (\widetilde{h}_{l})$$

Let $\beta = n^{-1}$; by Lemma 2 one has that $.\tilde{h}_l = R_m(\beta \tilde{k}_l).$ This means that

$$h_{il} = \sum_{j=1}^{n} r_{ij} \beta k_{jl}, \qquad (31)$$

and

$$h_{i} = \sum_{l=1}^{\infty} \rho(\mathbf{a}_{il}) \sum_{j=1}^{n} r_{ij} \beta k_{jl} = \sum_{l=1}^{\infty} \sum_{j=1}^{n} \rho(r_{ij} \mathbf{a}_{il}) \beta k_{jl}$$
(32)

Therefore.

$$\widetilde{h} = \sum_{l=1}^{\infty} \rho_n(\widetilde{\mathbf{c}}_l) \widetilde{\mathbf{B}} \beta \widetilde{k}_l$$
 (33)

Moreover

$$\begin{split} & \left| \widetilde{h} \right|_{l}^{2} \leq \left\| \sum_{l=1}^{\infty} \pi_{n} (\widetilde{\mathbf{c}}_{l}) \widetilde{\mathbf{B}} \widetilde{\mathbf{\beta}} \widetilde{\mathbf{k}}_{l} \right\|_{n}^{2} + n \sum_{l=1}^{\infty} \left\| \widetilde{\mathbf{k}}_{l} \right\|_{n}^{2} = \\ & = \sum_{l=1}^{n} \left\| \sum_{l=1}^{\infty} \sum_{j=1}^{n} \pi (r_{ij} \mathbf{a}_{il}) \mathbf{B} \widetilde{\mathbf{\beta}} \mathbf{k}_{jl} \right\|^{2} + \sum_{l=1}^{\infty} \widetilde{\mathbf{\beta}} \sum_{j=1}^{n} \left\| \mathbf{k}_{jl} \right\|^{2} = \\ & = \sum_{l=1}^{n} \left\| \sum_{l=1}^{\infty} \sum_{j=1}^{n} \pi (\mathbf{a}_{il}) \mathbf{B} h_{jl} \right\|^{2} + \sum_{l=1}^{\infty} \sum_{j=1}^{n} \left\| h_{jl} \right\|^{2} \leq \left| \widetilde{h} \right|_{n}^{2} + \varepsilon, \end{split}$$

where we made use of (7) and the fact that $\beta = 2^{-k}$

Thus, the reverse inequality is proved and we conclude the proof of the theorem.■

As an application of the above result to the Operator Theory, we will characterize those operators that are similar to contractions. It is known that $\mathbf{T} \in \boldsymbol{\mathit{L}(H)}$ is similar to a contraction if, and only if, the homomorphism $\rho:P(\mathbf{D}) \to \boldsymbol{\mathit{L}(H)}$ to defined by

$$\rho(f) = f(\mathbf{T}) \tag{35}$$

is completely bounded, where $P(\mathbf{D})$ denotes the space of the polynomials on the unit disc(see theorem 8.11 of [3]). Then by the result of Paulsen mentioned in the introduction, it suffices to prove that ρ is completely contractive homomorphism. But, in virtue of the Theorem 1, it reduces to find a Hilbert space K, a contraction $C \in \mathcal{L}(K)$, operators $A,B \in \mathcal{L}(H,K)$, and a countable family $\{ \vec{J_0} \text{ of linear generators of } P(\mathbf{D}) \text{ such that } \}$

$$\sum_{i=1}^{\infty} \left\| f_i(\mathbf{T}) - \mathbf{A}^* f_i(\mathbf{C}) \mathbf{B} \right\|^2 < \infty.$$
 (36)

since the homomorphism $\pi:C(T) \to L(K)$ defined by $\pi:(f) = f(C)$ is completely bounded. In particular, if the family of generators is $f_t = z^1$, with i = 0, 1, 2, ..., we obtains the following corollary.

Corollary 1.-(Holbrook Theorem [2]) Suppose $T \in \mathcal{U}(H)$. Then T is similar to a contraction if, and only if, there exist a Hilbert space K, a contraction $C \in L(K)$ and operators $A,B \in \mathcal{L}(H,K)$, such that,

$$\sum_{i=0}^{\infty} \|\mathbf{T}^{i} - \mathbf{A}^{*} \mathbf{C}^{i} \mathbf{B}\|^{2} < \infty. \tag{37}$$

From this corollary, one can obtain the results of Rota [4] and the Sz-Nagy and Foias [5] about similarity to contractions by more direct procedures than those used in the proof by Paulsen in [1]. See Holbrook [2].

References

- PAULSEN, V.I., Completely Bounded Homomorphisms of Operator Algebras, Proc. Amer. Math. Soc. Vol 62, 6(1984), 225-228.
- HOLBROOK, J., Operators Similar to Contractions, Acta Sci. Math., 34 (1973), 163-168.
- PAULSEN, V.I., Completely Bounded Maps and Dilations Pitman Research Notes in Math. 146, Longman(1986).
- ROTA, G.C., On Models for Linear Operators, Comm. Purl. Appl. Math., 13 (1960), 469-472.
- SZ-NAGY, B., FOIAS, C., Harmonic Analysis of Operators in Hilbert Space. Akademiai Kiado (1970).

Recibido el 30 de Marzo de 1993 En forma revisada el 8 de Marzo de 1995