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ABSTRACT

Over the years several authors have obtained
7arious properties of the Laplace transformation with
:he integration restricted to a finite interval. We
discuss the operational properties and illustrate their
applications to a boundary value problem for each an
ordinary and a partial differential equation problem.
lhe compatibility conditions which arise from the
oroperty that the transform is an entire function play a
tey rdle in applications to these boundary value
oroblems.

RESUMEN

A través de los afios diversos autores han obtenido
varias propiedades de la transformada de Laplace con la
Integracién restringfda a un intervalo finito. Nosotros
discutiremos las propiedades operacionales e
llustraremos sus aplicaciones a un problema de valor de
contorno en el caso que se tenga una ecuacién
diferencial ordinaria ¢ en drivadas parciales. Las
condiciones de compatibilidad las cuales surgen de la
oropiedad de que la transformada es una funcién entera
juega un papel decisivo en las aplicaciones a estos
oroblemas de valores de contorno.

1. INTRODUCTION

Scattered over the past 50 years there has been
occasional work which has appeared in the literature in
‘regard to the finite Laplace transformation. For our
purposes we take

r e™ f(t)dt = L (f() = ?L(s)
0

for the defining integral and notation. If we denote the
unit step function by u(u(t) = 1 if t>0, u(t) = 0 if
t<0),

LL(f (t)) = L{f(t)u(L-t)}

FINITE LAPLACE TRANSFORMATION

gives us the connection between the finite Laplace
transformation and the ordinary Laplace transformation.
Many, but not all, of the properties for the finite case
are thus inherited from the infinite case.

Necessary and sufficient conditions that a Laplace
transform correspond to an original function f(t) which
is zero for t>L were given by Doetsch [2]. Further
results in regard to the cut-off point were developed by
Doetsch [4, pp. 225-232). Titchmarsh [11] obtained
information on the number of zeros of fl_(é). The result

that ;L(s) is an entire function seems to be due to

Pincherle [9]; the proof by Landau [8] can also be found
in [3, p.145].

Some of the operational properties have been
developed by Dunn [5], and similarly by Debnath and
Thomas [1]. Applications to problems in differential
equations were given by Doetsch [4, pp. 261-2], Dunn
[S], and Debnath and Thomas [1]. Ghizetti [7] introduced
a more general format for the definition in connection
with an application to partial differential equations.
He uses

Jﬁ(x) =
sy & u(x,y)dy = a(x,q) ,

where the variable limits were used in order to study
Laplace’s equation on the region 0 < x < 1, a(x) s y =
B(x). Useful tables entries can be found in Roberts and
Kaufman [10], especially section 33 which is devoted to
"window functions”. As will be explained Ilater,
inversion tables for the ordinary Laplace transformation
are sufficient for boundary value problems on [O,L].

The transform fL(s) is an entire function. This

property, the wuse of which is essential for
applications, may be what has stood in the way of wider
use of this finite case. Complex analysis is usually
avoided in the elementary texts and few users, from
other areas especially, are consequently exposed to the
deeper properties of the transforms. ‘A little knowledge
of analytic functions does. go a long way, however, as
will be illustrated in the examples.
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2. PROPERTIES

A cheap, but useful, existence result for the
transform results from the observation that the kernel
is continuous on [O,L). Consequently, if f is Integrable

on [O,L], ;L(s) exists. Not only Iis fL(s) an entire

function, but its derivatives satisfy the simple

relation
Dt £ (s) = r: e (-t Flt)dt .

‘The transform of the derivative of a function readily
follows from integration by parts.

We have

L) = s?L(-) + e H(L-) -f(04) ,

provided f is continuous on (0,L) and the interior
limits at the endpoints exist. Whenever f has a
disoontlnulty_.gt the point a with O < a < L, the
expression e = (f(a-)-f(a+)) must. be added, however.

Two useful forms for the transforms of integrals
can also be obtained simply from integration by parts.
We have

{3 P a
-1 -1 sl
LL{ J'o fw)dv } =57 f(s) - s T 0,

e 5
LL{ J-: f(v)dv } = -g fL(s) +8 fL(O) P

Iterations of the rormulas for the transforms of
the derivative or the integral directly produce the
hlgher order properties.

The rescaling properties are not as useful in this
finite case, since they alter the interval. The
exponential shift property

L ( et o) ) = ?L(s«:) ;

however, follows directly from the definition.

The convolution for the ordinary Laplace
transformation for O < t < L uses only input from the
functions for O < t < L. Consequently, for that interval
we have

To o t
fL(s)gL(s) = LL { Io f(t - viglv)dy }

(The Laplace convolution for functions which satisfy
f(v) = gv) = O for v < 0 and for v > L reduces to
integration over the Interval [max(t - L,0), min(t,L)].
However, for O < t < L this coincides with [0,t].)

Some simple examples of transform pairs are

L= 52 o™ (st 25,

L € =(s+07 [l - eTL('W’] ,

L (ut-a)) =57 (e®*-e™), 0<ac<L.

L (8(t-a)) = 2 o<m<l.

Here 3 represents the Dirac &-function; the theory can
be generalized in various ways so as to include it.

3. A BOUNDARY VALUE PROBLEM

A simple example for the i{llustration of the method is
the boundary value problem

y'(x) + b%y(x) =0,  y(0) = y(L) = O, >0,

The transformed problem incorporates four boundary
conditions, only two of which are given,

s%yL(s) + (e™y1(L-) - y1(0+)) + bZyu(s) = O.

Somehow we must evaluate y!(L-) and y!(0+). The
algebraic equation can be solved,

e “"y1(L-)-y!(0+)

s2 4*!.)2

;l(s) = -
If the functions in the original problem are assumed to
be bounded and integrable, then yL(s) must be an entire
function. Hence the numerator must be zero at s = #jb.
The two,conditions

e™yl(L-) - yl(o+) = 0

e®yl(L-) - yl(o+) = 0

must be satisfied. We refer to such conditions as
compatiblility conditions. It is from such conditions
that the extra boundary condmins can be studied. If
bL = kwx, then y!(L-) = (-1)"y!(0+) and there are an
infinite number of solutions,

14y §

ys) = ylon 1 -
s +(kn/L)

where y!(0+) is arbitrary. The exponential shift for the
ordinary Laplace transformation has the property
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e™® f(s) = L{f(t - L)u(t-L))  for L > O.
Consequently, terms multiplied by e™ can be
disregarded in the inversion, since we are interested
only in the interval [O,L]. As a consequence, ordinary
inversion tables, such as Roberts and Kaufman [l0], can
be used for the inversion of the remaining terms .

Hence

y(x) = y(0O+) _r___)_sin:‘:::/L)

In the other case, if bL # kmr, then the compatibility
conditions cannot be satisfied, except by the trivial
solution y(L-) = y(0+) = 0. Hence only the trivial
solution y(x) = O exists.

An initial value problem could be handled similarly. In
fact, we could just as well consider the general linear
homogeneous boundary conditions

I

bl 2 2
aoy(0+) + Boy (0+) = 0, a + ﬂo #0,

1
L

2 2
aLy(L—) + BLy'(L—) o +B *0,

These could be used to eliminate two of the four
boundary values, then the compatibility conditions can
be used to relate the remaining two values. As with the
ordinary Laplace transformation, if the boundary
conditions are non-homogeneous, the general method Iis
not altered, merely the computational details are more
complicated.If b = O the problem is only slightly
altered by the, appearance of a double root of the
denominator of yL(s). Hence at s = O both the numerator
and its derivative must be set to zero to obtain the
compatibility conditions

yH(L-) - yl(0+)

1
L

-Lyl(L-)-yl(0+)

1
o

These lead only to the trivial solution y(x) = 0. All of
the ideas of this paragraph carry over to the case of
the non-homogeneous differential equation. Complications
occur only in the details of the computations.

Were the differential equation non-homogeneous,

¥'(x) + by(x) = f(x), b * O,

the compatibility conditions would read,

e ylL-) - yl(on) = FL(ib) .

™ ylL) - ylon) = f (-ib)

which are non-homogeneous. Elimination of y’(L-) results
in

(2isin(bL))y’(0+) = e " ?L(-ib) = gl FL(iu) .

Here we see that if bL = km, then there is no solution
for y!(0+) unless the right hand side of the equation is
also zero; that is, unless

JJ; sin(b(L - v)) f(v)dv = 0.

In that case y!(0+) is arbitrary. Similarly, there is no
solution for y!(L-) unless

JJ; sin(bv) f(v)dv = 0

On the other hand if bL # km there is a unique solution
for the previously unassigned boundary values

yhom = [ SR~ WD) gy,

(L-) = sin(bv)
yh(L-) Jt “Fn (o) f(v)dv ,

Inversion is now easy, we ignore the terms which have

the factor e~ and we wuse the ordinary Laplace
convolution to obtain, for bL = kmn,

y(x) = ﬁ b7 sin(b(x - V)F(W)dy) +

45 alntEd J': sin(b(L - v))

—mﬂ——— f(v)dv » 0 < x < L.

4. A PARTIAL DIFFERENTIAL EQUATION PROBLEM

A more complicated example is provided by the one
dimensional heat equation with a source term

u(x,t) = u (x,t) + ¢(x,t) , t>0, O<x<L.
t xx

=43 =
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We assume an initial temperature profile of f(x),
insulation at x = L, and that the temperature at x = 0
is described by g(t). An expression for the temperature
at x = L is desired; that is, we want a formula for
u(L,t). Thus the initial and boundary conditions can be
written

u(x,0) = f(x), 0<x<L,
ul(Lt)=0 , 0,
x

u(o,t) = g(t) , >0

The application of the finite Laplace
transformation converts the problem into
3,20 = 2z e 2e L, 0-glt)-u (0,0) + 4z,
u(z,0) = f(2).
It is convenient next to apply the Laplace

transformation so that an algebraic equation is

obtained. This equation can be solved for

- f(2) + ze (L, 5)-zg(z)-u_(0,5) + #(z,s)

u(z,s) =

2
s~z

Since u (z,s) must be an entire_ function of z, the
numerator must be zero at z=%s °. This produces two
compatibility conditions

. 2 . X & e

f(s¥?) + 2 e ulL,s) - 52 gls) - uls) - u (0,s)
+ ; (sllz,s) =0,

I e 172 -L-V2 i 2 " N

f(-s" %) -s" " e u(L,s) + s ° g(s) - ux(o,s) +

+ ; (—sl’z.s) = 0.

These equations can be solved for the transforms of the
unknown boundary conditions; we have

172 2

)+25' %2 (5)-9(s " 2)+g(-s"2,5)

2 cosh (Ls'’?)

;(L o) ~E(sl/2)+;(—s

which yet needs to be inverted.

In order to carry out the inversion some formulas which
involve heat kernels are required. From Roberts and
Kaufman [10]

2

Lt {e'“ } = W(L,t) = Lnt®) ™2 exp(-L/(a1)) ,
a [ -1z _-1s?
L {s e } = 2L,t) = (rt)? exp(-L/(41)) ,

L"{u/z) sech u.s"’)} = -(2L)* 20 (v2|t/ M 0v| |

+00

=27 7 0w - 1v2)L,0) = kv,

n=-o

For the inversion of f(s?) we need and Efros formula

for the finite transformation. Various cases ‘of such
formulas appear in the tables [10]; the first general
result dis due to Efros (6]. Assuming absolutely
convergent integrals, the desired formula can be derived
directly from the definition of the tansform as follows.

- 172
f(s"?) = ,C e ™ flw)dw

= JJ; (J.:‘ ™ Yw,t)dt) f(w)dw
=L { ﬁ w(w,t)f(w)dw}

The result for f (-sl/Z] is an analog; hence we have

It { -£(s"%) + f(-s"z)}= J’: (W-w,t) - ylw,t)f (w)dw.

In a similar manner we obtain

a 0 2
¢ (%) = ﬁ L e™ V% (w,v)dvdw

© ® bty
= JJ; Io I" e"“ ° ww,x)¢(w,v)dxdvdw

0
L et J‘: J: Wlw,t - v)p(w,v)dvdwdx

t
L { I: ‘L Yiw,t - v)g(w,v)dvdw } .

]

[}

Consequently,
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et { - ; (s"%5) + ; (-s"%s) } =

t
- JJ; L (Y-, t-v) — Ylw,t-v))g(w,v)dvdw .

We can now write u(L,t) in terms of convolutions
with the function k(t),

u(L,t) = [JJ; (&(-w.t)—w(w,t))f(w)dw] * k(v

+ Dt(g(t) * x(0,t) * k(1))

¥ [ Jt J-: W(-w,t-v) - ylw,t - v)) ¢(w,v)dwdv) * k(t).

Because the heat kernels convolution

identities,

satisfy the

x(a,t) * y(b,t) = x(a + b,t),
yla,t) ® y(b,t) = yla+b,t),
which are easy to obtain from the Laplace transforms, we
can rewrite the convolutions.

Hence our temperature result can be expressed as

u(L,t) =
+00
=g n
* =2 (-1) _r (Y((n - 1/2)L - w,t) -
L
v((n - 172)L + w,t))) f(w)dw
+00 "
-1
% 2 z D, L x((n - 1/2)L,t - v)gv)dv
n=-o
+00 "
=22 Z -n" JJ- .[ (y((n - 1/2)L - w,t - ») -
. o Jo

-¢((n - 1/2)L + w,t - v))¢(w,v)dvdw.

Several points should be noted. First, both of the
heat kernels decay rapidly with |n|; in fact, they
behave something like exp(-cn”). Second, the Efros
formulas for the finite interval correspond to those for
the infinite interval, suitably chopped. Third, we did
not need to compute the full solution u(x,t) for
arbitrary x, and then evaluate u(L,t). Fourth, the flux
at x = O can similarly be obtained. Fifth, u(x,t) could
also be obtained, we simply use of the compatibility

conditions to eliminate u(L,s) and u (0,s), and then we
x

invert that result.
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