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ABSTRACT

In this paper we establish some theorems ana-
logues to Rusev's results. We also study the cha-
racter of the correspondence between the functional
space L(Ay) and G(Ay) provided by the Hankel trans-
form.

RESUMEN

En este trabajo se dan algunos teoremas andlo-—
gos a los resultados de Rusev. Ademds se estudia
la correspondencia entre el espacio funcional L(}y)
y G(Ag) generado por la transformada de Hankel.

1. INTRODUCTION

Let fﬂn}mnno be a sequence of complex numbers

such that —limsup(Z/E)_IPnlanl= XO(O<AO§ + ), It
<o, )

is well known |1|that in this case the region of

convergence of a series in Laguerre polynomials

R A 1))
ﬂ“o nn

is the interior A(lc) of the parabola p(ko) defined
by the equality Ref(-z)1/2}= Ao' More precisely,
the series (1) converges absolutely and uniformly
on every compact subset of A(AO) and hence defines

an holomorphic function f(z) there.

The problem of representing analytic functions

by series in Hermite polynomials (H (z)lc:,o was
solved by Hille [2] in 1940. In 1947 Pollard  [3]

published a paper in which, using Hille's results,

he solved the problem of representing analytic

functions by series in Laguerre polynomials

HANKEL TRANSFORM AND SERIES REPRESENTATION
IN LAGUERRE POLYNOMIALS

(Liu)(z)}:=o for

neralized by Rusev [&].

a=0. Pollard's result was ge-
We mention here Rusev's re-

sult which will be used in our analysis. Let's de-
fine L(Ag)(0 <Xy £ + =) to be the vector space of
all complex functions £, holomorphic in the region
A(hg) and having the following property: for every
0 £ A < )\, there exists a constant D = D(f;}) such
A(A): Re ((-Z)Ilz} £ % then

the inequality |[f(z)| £ D exp (#(A;x,y)] hols, where

that if z = x + iy

2,2 v ¢ S 1/2
d(hix,y) = Tx +y +x ) x +y +x ()\2_ .

(2)

We have the following result due to Rusev [4]:

THEOREM 1. Let a# -1,-2,... be real and 0<}d, S e
A complex function f holomorphic in the region A(),)
has a series representation there in Laguerre poly-
nomials (1{% (2))7_iff fE€L( ).

The integral representation of Laguerre poly-

nomials [6, ikl 10.12.(21)] allows us to consider
(o)
n
holomorphic in the region C-(-«, O)], as a
type integral transform of the

1 nto/2
(n3) "z

Due to this fact we have that if an analytic

the ioalitic Patstise 402 (z) which is

Hankel
function

exp(-z)L

exp(-z) holomorphic in the same region.
func-
tion has a series representation in Laguerre poly-
nomials, then this function is a Hankel's transform
of a suitable complex (analytic) function. 1In [4]
Rusev introduced the class G(0) (—=<ugto) of all

entire functious &(w) having the property
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lim sup (2 |w| )_1 [Rn} d(w) - Iwﬂ <o

|w|+ + o

and characterized by the following

LEMMA 1. An entire function

© a
x r‘l‘,’ w (3)
n=0 i

P(w) =

belongs to the class G(g) iff

1limsup (Z/E)_lkn|a | £ o (4)
n - t+o T

The class G(0), when 0 = Au' plays an impor—
tant role in characterizing the class L(A,),because
the following statement holds [&]:

THEOREM 2. Let 0< Xo <+wand o >-1. For a com-
plex function £, holomorphic in the region A(XO).LO
be expanded there in a series in Laguerre polyno-
mials, it is necessary and sufficient that the fol-

lowing representation holds in the region

v

2
A ) =80 - (A), 0]

a/2

f(z) = 2 % expz I % exp(-t) B(0)3 (2/ZD)de,

(5)

where the function ¢ € G(Ao).

Let, as usual, hf(B) be an indicator function
[7] of f£. As a direct application of Theorem 2,
Rusev proved that the following statement holds

(5, .40, (0]

THEOREM 3. If f is an entire function of an
exponential type less than one and hg(0)< 1/2, then
£ EL(+).

In this paper we shall prove that a result a-

nalogues to Theorem 2 holds for the functions of
the class G(AO) (0 < Ao < + ®). We will also show
that if the function (3) is of an exponential type
less than one, then the corresponding function f
from Theorem 2 belongs to the class L(+*) and the
assumption hf(O) < 1/2 from Theorem 3 is fulfilled.
Finally we study the caracter of the correspondence
between the functional spaces L(Ao) and G(Ao) pro-

vided by the Hankel transform (5).

2. ENTIRE FUNCTIONS AND HANKEL
TRANSFORM
On the basis of Theorem 2 one may suppose that
every function of the class G(XO) is an inverse
Hankel's transform of a function of the class L(loy
This turns out to be true and the following state-

mént can be proved.

THEOREM 4. Let 0< Ao € teand @ > -1. The en-
tire function (3) is of the class G(XO) iff the
following representation holds in the region

\
A (+0) = C-(=o, 0]

() = t—&/2 exp t[ quz exp(-x)f(x)%l(Z/EF)dx,

o
(6)

where the function f L(ko).

Proof: From (2) and the asymptotic formula of
Bessel's function [6, v.II, 7.13.1] it follows
immediately that the integral in (6) is absolutely
and uniformly convergent on every compact subset

K CX(+ @),

Let f € L(lo) and the representation (6)holds.
From Theorem 1 it follows that the inequality  (4)

at o= AO is valid. We define

v an n
Rv(:) = Pfe) = I oot
n=o
N
for v =20,1,2, ... and t A(+®). It is easy to

see that
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(a)
® L (x)
R (t) =K  exp(-x)f(x){ = 2 " lax
. n=v+l [(ntotl)

D)

L
For a fixed t € A(+°), from the absolutely uniform
convergence of the integral in (6) it follows that

for every positive £ > 0

there exists T = T(g) >0
such that
@ o
) 1o el .
x exp(-x) |£(x)]| I ——— ¢ dx < €
T n=0 I(nteetl)
Then for every = 0,1,2,...
o0 o @ L(a)(x)
x exp(—x)f(x) : A TR dxi< ¢
T n=v+l ['(n+otl)
(8)

Further, there exists N = N(g) >0 with the proper—

ty that if V>N and 0<x<T, then

© £°‘2 x)

n n

p] e A 1 €€
T IM{n+o+l)

Therefore
T . - £u)(x) )
I x exp(—x)£(x){ I 8 ¢ dx
0 n= +1  T(ntoatl)

T (€))
= O{E I x* exp(-x) | £(x)| dx] = 0(E)

o
From (7), (8) and (9) we get that Rv(t) = 0 (g)
(v>N), i.e. the series (3) represents the func-
tion & in the region &(+®) and therefore in

A(+<) = C. Now from Lemma | it immediately follows
that ¢ 6(;()\0) .

Let us suppose now that the function (3) be-

longs to the class G(Ay). From Lemma 1l it follows

that limsup(z/;)—L n |an| < Ao’ i.e, the series

= n*?w
I alL CL)(z)
n n
n=0
is absolutely uniformly convergent on every com-—

pact subset of A(Ao) and therefore define there an

analytic function of the class L(Ao). Let us define

_ i (o)
f(2) = “EO anLn (), = E.A(Xo)

But, as we have just seen, the integral

L_a/z expt J. xu/Z exp(-x) f£(x) JQ(Z/QZ)dx

Q

defines an entire function ®*(t) of the «class
~

G(Ao). when t € A(+») and

Therefore,p*=dand the representation (6) holds.

3. ENTIRE FUNCTIONS AND SERIES
IN LAGUERRE POLYNOMIALS

Eigenfunction expansions are sometimes useful
in studying the properties of the funct ions to
which they converge. tlere we consider entire func-

tions and their expansions in terms of Laguerre se-
ries, We shall show that every function of this
kind is an entire function of an exponential type
which indicator function satisfies the inequality
hg(0) < 1/2, on the assumption that the functions
define by (6) are entire functions of exponential
type less than one. In fact, the following theorem
holds.

THEOREM 5. Let (3) be an entire function of an
exponential type less than one and f(z) be defined
by (5). Then f(2) is an entire function of exponen-
tial type which indicator function satisfies the
inequality hg(0) < 1/2.

Proof: It is well known [7] that the type of
. n—
$ is given by the formula 7 = llﬂ?up ’laﬂl' From
n -+
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the assumption that 1<l it follows that -limsup
(2 Vm~1 fnlay| = 4=, i.e. ®€G(4=). From B haon
rem 2 we conclude that f€ L(+x), i.e. f is an en-
tire function. Polya's representation enables us to

conclude that the following equality holds

f(z) = —l—*z-alzexpz j-K(z;c)B () dz , where
i T ¢
K(z;L) =j' e exp {-(1-z)t} Ja(zJEE) de (10)
8]

The contour [' is any circular path with center at
the origin and radius p : T < p < 1. B¢(§) is the
Borel transform of ¢. It can easily be seen that,
if €L,

(230 = 2%? expt=)(1-g) % expt- H ) (1n
1-z

From (10Q) and (11) we find the integral representa-
tion

flz) = —— .[(l-c)—Hx exp(~ 2%

B¢(C) dg, (12)
2ni T 1=g

If we put now

M(p) = max |(1-g) T B¢(§)! ;
C€r
olp) =mex  JeG-o Y .

z€r
then from (12) one may conclude that

ez | g oM e [0 (o) 2]

from where it can be seen that f is of exponential
type.

The indicator function of f is defined by the
formula [ﬂ:

he(6) = limsup ' n |E(zexpid)|
> 4@

In our case, having in mind (12), we find that

he(0) ¢ max Re { z(z-1)7') = p(14p) " < 172

T re€r

and so the theorem is proved.

4. ON AN ISOMORPHISM PROVIDED BY HANKEL
TRANSFORM

From the validity of Theorem 2 and Theorem 4
we are encouraged to study movre precizely the
correspondence betwen the functional spaces L(x,)
and G()Ay) provided by the Hankel transform

<«
af2 expzj- tu/zexp(-t)@(L)Jm(Z/ZE)dt

(2]

Ha(v;Z) =z
(13)

where Jg is the Bessel function of the first kind
with index n. First of all we prove the following
two preliminary statements:

LEMMA 2. 1If 0< A, £ +® and a>-1, then the Hankel
transform (13) provid a linear one to one corres—

pondance betwen L(A,) and G(Ao)-

Proof: If fy(z) and fy(z) are an arbitrary
functions belonging to L(Ag), from [4, Theorem 4.3,
(b)] follows that Afj(z) + ufz(z) belongs toL(Ag),
where A and U are arbitrary complex numbers.
In the same manner it can be proved that G(Xy) is a
linear functional space too.

From the linear property of the Hankel's
transform (13) it is clear that if ¢; and & be-
long to G(),) then

HQ(A¢1+ u@z;z) = AHQ(¢1;z) + uﬂa(¢2;z)

as well as that
B L+ pf_sw) = AHCN(E, jw)+ pHOS(E, sw)
o 1 2’ o D K v S

Let £(z) can be represented in the region
A(Ag) by a series of the kind (1). From the genera-—
ting function formula for Laguerre polynomials [6.
10.12,(18)] one get

(n!)-lun = w_ulzexpw b xalzexp(-x)Lﬁu)(x)Ju(ZJG;)dx
o

Then for w € C,

- 112 -

Rev. Téc. Ing., Univ. Zulia, Vol.,12, No. 2, 1989



O(w) = H;l(f;w) -

o

L a Jw—alzexpwj xalzexp(—x)l\.:)( %) JG(Z/w_x)dx =

; 4 . 0 -1 .
Having in mind that —‘}lmfgp(Z/ﬁ.) in lﬂn| 241
[A, Theorem 4.3,(b)] we can make the
that ’f’(w)F_C(XO).

conclusion

Let @ is an arbitrary function of G(Ay). From
the formula [6,!0.12.(21) for Laguerre polynomials
it follows that for z € A()p),

f(z) = Hu(?:z) = 1 3

oo
{z-alz espz | tn-h:x/Z exp(~t)-1u(7—/z_[)dt} -
0

I 18

(a)
B a_ Ln (z)

Because -limsup(Ey’;)_lﬂnlan| 2 Au from [4, Theorem
Ns +m
4.3, (0] it Follows that fz)e LA ).

Finally from Theorem 2 and Theorem 4 follows
that this Lemma is valid.
1f we denote the differential operator
e )
k by Du
aw
the following statement can be proved:
LEMMA 3. 1If 0 <A < + =, o >1 and the func-

tion £(z) belongsoto'l,(ko). then for an arbitrary
integer k>0 the integral

—-0./2 -
5 XQ/Z exp(=x)f(x) D‘('k) [w expwJa(z'/Wx)]dx
o]
(14)
defines a function belonging to G(Xo)
Proof: By induction, it can be easyly proved

using the formula [6,10.12{ 18)], that for an arbi-
trary integer k>0 ,

D':k) [w-alzexpw.]a(z/v—zx_)] =

k
m k, m/2 —(m+aw)/2
mEo(-l) (x v expwd o (2/wx)

Thus, the integral (14) can be represented as

k m, k
expw £ (-1) (m)w

m=0

-(mo) /2

5 x(mm)/zexp(-x)f(x)Jm(Z/Jx—)dx (15)

Let MCC be an arbitrary compact set and

Ak = max Rva(—w)”:Z

wEM

From Theorem | and the asymptotic
Bessel functions [6,7.13.1,(3)]
for an arbitrary &£>0

formula for
it follows, that
» m=0,1,2,...,k and we€M

]é m".Gl)/lzexp(—x) f(x)Jw(Z/w—x) |

=0 {x(m”zexp(-xlz) exp( ZA*—A°+6)/;

Therefore the integrals in (15) absolutely unifor-

mly converge on M, i.e. the integral (l4) defines
an entire function.

Let we assume that the function £(z) has a
representation by a series (1), where the coeffi-

cients are given by the formula

5 5 I'(n+lzf 2 exp(-t)f(t)hl(‘u)(c)dt'
" Motatl) ‘0

n=0,1,2,...

fFrom [6,10.12,(18)] it follows, that for an arbi-
trary integer k>0
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fmxa/2 -0/2

exp(—x)f(x)D(k)Lw
fo} w

expw Ja(?_/w?)] dx =

; (atk) !

Q& (o) n
-x) £ 3 -
0=0 n!(nt+k+a)! {Jr % L) (X)Ln+k(x) dx Hw

"o

According to Eé, Theorem 4.3.(b)] , for an arbitra-~

ry integer k>0, ]imsup(ZJa)-anIa | < -2 and
> + otk' = o
therefore
© a
g 2k Peenn.
n! o
n=o

Using the lemmas proved above we
the following.

can prove now

THEOREM. The Hankel transform (13) provides an is-
omorphism betwen the functional spaces L(} ) and
GO ) °
o

Proof: It's known [8,2.3] that L()\,) and G(rg)
are multinormed linear spaces. Let us equip G(A,)
with a topology defined by the multinorm (YM kyﬂ ,
where e

(k)

Y (@) =sup |® (w)| , ®E€c6QR)
M,k w €M o
and M CC 1is an arbitrary compact set. If for every

compact subset k CA (A,) we define a seminorm ny(f)
on L(Ay) by the formula ry(£) =zs&%-|f(z)|‘f LEAg) s
then the topology of this space can be defined by
the multinorm {ry}.

Let #(w) € G(Ay) is an arbitrary function.From
Theorem 4 and Lemma 3 follows that

289w =0 @) € cr)
w o]
and
(k) =
¢ (x| ;[o xa/zexp(—x)lf(x)HD‘ik)
[w_a/zexpw Ja(e/;;>1 !dx

As the integral (14) converger absolutely and
formly, there exists T > 0

uni-
such that for weM and

k > 0

* af2 (k /2
I X% exp(-x) [f(x)||Dw )[w a expuJu(Z/;;ﬂ 'dx<£
T

where € > 0 1is an arbitrary small number. In this
way one gets that

Vg, k() € B Gwi)npg 41(0) (16)
where

T
. —0/2

Bl(w;T) fxdlzexp(—x)|03k)[w rl"ex;:) W Ja(Z/G;)]|dx

L o

0

In the same way it can be seen that there exists

T)> 0 such that for z €k,

] @

I+.8

ﬂk(f) = AJ(z;Fl). Y[O

where

T
1 :
Aq(Z:Tl): I tq/zexp(—t) fz-ill exp z J%(Z/if)l dt

Let { Q»V}:to be an arbitrary sequence of func-
tions belonging to G(AG), which converges to a
function ® €6G(\ ), i.e. according [8,Lemma L6.1],

o]

for an arbitrary seminorm on G(Ay) and k = 0,1,2,..

lim y (¢ -9)=0. If we denote fv(z) = Ha(¢v 3:2)

V4o M,k ]

and f(z) = Ha(Q;z) from (17) and Lemma 2 it fol-

lows that for an arbitrary seminorm on L(XAg), lim
\)#m

nk(fv—f) = 0.

@ -
Let now (f !} be an arbitrary sequence of
v

=0
functions belonging to L(Ao), which converges to a
function fé[&xo). Then for an arbitrary seminorm

on L(Xo), 1%2 nk(fv - £) = 0. If we denote Wv(w) =
"
H;l(fv;w) and ¥(w) = H;l(f;w). then from (l6) and

Lemma 2 follows that for an arbitrary seminorm
A i “
G( o)’ lim "M,k

l.6.l] 5€+:onc1ude that the sequence

on

(¢, - @) = 0. According to [8,Lenma
-1 y

(Hu (£,5w) 1

converges to H;I(f;w).
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