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ABSTRACT

i [“1! Janar e investlﬁate @ digcrere intes

ﬂfﬂl !Tansgormation on the real line, which, with
respect to the convolution structure, is better
adapted than the discrete Hermite transformation,
introduced by Debnath. The kernels are complex—
valued rational functions which are the Fourier
transforms of the Laguerre polynomials and which
were introduced by N. Wiener. Some remarks about

a real version, following a paper of Christov are
added

ABSTRACT

En este [rabajo se investiga una transforma-
cidn integral discreta sobre la 1inea real, la
cual, considerando la estructura de la convolucifn,
se adapta mejor que la transformacidn discreta de
Hermite introducida por Debnath. Los niicleos son
funciones racionales de valores complejos,las cua-
les son transformadas de Fourier de los polinomios
de Laguerre introducidos por N, Wiener. Se inclu-
yen algunas observaciones sobre la versidn real,
siguiendo un trabajo de Christov,

1. INTRODUCTION

In [4], [5] Debnath has investigated the
discrete Hermite transforms, that are the Fourier-
coefficients with respect to the complete
orthonormal system (CON) of the Hermite functions
on the real line. As was pointed out in [5], the
convolution theorem exists only for odd arguments
(see also [6], [7]), a gap, which can be closed
considering the Hermite transformation of genera-
lized functions (see [8]). The reason for the non-
existence of a general convolution theorem (In the
classical case) is the non-existence of a lineari-
zation formula for the product of two Hermite
polynomials.

Therefore another CON on the real line, which
consists of complex-valued rational functions, and
which was introduced in [12}, 1.03 by Wiener,
seems to be better adapted for the study of an
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ON THE WIENER-LAGUERRE TRANSFQRMATION

in%egra% transformation on the real line,  There
exist 11Q?Iﬂ[1ﬁﬁ[iﬂﬂ iUIMUlﬁa Witk respect to the
i[ium[ﬂ[ l! Wﬂll !! Ul!L res?ect to ghg iﬂﬂtl. Tne

HEMLérs of tke CON are essentially the Fourier
transforms of the Laguerre functions. In [B]Chris—
tov has given a real-valued CON, which is connec-
ted with the complex-valued CON above analogous to
the functions cos x and sin x with the Ffunction
exp ix.

In section 2 we repeat some results on the
kernel of the integral transform under congidera—
tion, using [12], 1.03, [9], 2.6.4. and [3]. Also
we give a linearization of the product of two
kernels with the same index and different argu—
ments (see (2.13)). In section 3 we define the
transformation 7, in certain original spaces, An

inversion theorem is proved and a connexion  bet-—

ween 1 and the 2 - and Stieltjes- transformations
is derived., Section 4 deals with the operational
calculus of the associated integral transformation
including convolution theorems in the original-
and in the image-domain, which are missing in the
case of the Hermite transformation. In section 5
we will remark on a real version of the kernel and
the transformation, following Christov [3].

It must be mentioned, that in [3] Christov
has explained, that the CON of the Wiener-Laguerre
—functions is very well adapted for the determina-
tion of solutions of interesting non-linear dif-
ferential equations of mathematical physics which
are square integrable on the real line because of
the asymptotic behaviour of the functions of the
CON at ¥ =(like x ') and the existence of lineari-
zation formulas.

NOTATIONS, In this paper N denotes the set
of natural numbers, N, = N v {0] , 2 che set
of integers, R the field of real numbers, R*, R~
the subsets of positive and negative real numbers
respectively., With ¢ we denote the field of
complex numbers and a* is the complex conjugate of
a.

2, THE WIENER-LAGUERRE FUNCTIONS

It is well known, that the Laguerre functions
(of order zero)
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Lo -Meg | ey (0.1

where L, are the Laguerre polynomials

L = @)™ 2%, e N, (2.1

form a complgte orthuno;mal system in Ly( R+). Let
Dibe the (unitary) fourier tyaneformation defined
y

e

[ gieye B¢ g (2.2)

-

21
de] ) = @n~ 12

and n be the Heaviside function

1(t) = ' (2.3)

From the fact that the sequence
(/Eh(:)ln(Zt)}nzo forms a CON in Ly( B') too, we

conclude that the sequence (p } with

n=0

p n(x) = [/Z n(t)ln(ZI)] (x), xe R, n¢g No-
(2.4)

forms a CON in that subspace L; of L,(R), for
which the inverse Fourier transforms vanish on the
negative real line R , Similarly by straight for-
ward calculation we have that the sequence

iy

(=V2n(-0)1 (-20)} o = - V2 al-0)1 _,(=20)} _,

n-1

forms a CON in Lp(R"). Therefore, the sequence

[n‘n} ney With

p o0 = c[-/In-o1_ (-20] (), n €N (2.5)

forms a CON in that subspace L; of Ly ( R) for
which the inverse Fourier transforms vanish on
the positive real line R, Because of Lp( R )=Lj+
Lyt we conclude, that the set [pn} pe—s forms a
CON in Lp(R). If we take the Laplace transform

L = f e-uf(t)dt, (2.2")
then from (2.4) we get
p_(x) = 2—;-; 1] &, nen , (2.4")
and from (243) we Dave
p_ () = —2-‘771?- L1 ] =35, nex (2.5")

Using 2], 4.11., (31) after a simple cal-
culation from (2.4), (2.5) we have

1 Gx)”

o (x) = 2
B e eyt

néZ , x€eR., (2.6)

For details we refer to [9], section 2.6.4.

In the following we let n,m,k ¢ Z and t,x,vé€
R. Now let us look at some properties of the func-
tions p,, which are proved by straightforward
caleulations. From (2.6) we derive

by == B g (2.6
*
p (%) = (x), (2.7
and
o I« w/m. (2.8)
n

The asymptotic as x tends to t » is given by
p (x) v -iffix, x+ T, 2,9)

By means of rhe first of the formulas
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Pamy ¥ = 0, (x) = ﬁ P, (X, (2.10)

and

Py (%) + 0,00 = 28x 0, () /ime) (2.10")
we can derive the recurrences
- -
oa =7 [0 opy - @D o+ oy, ]o 21D
and

2”1-;(“) = non_l(x) —pn(X) - (n+l) P () (2.11")

From the recurrence for the Laguerre polynomials,

see [1], 10,12 (§), ad (Lll'), (.4, (1.3,
afrer a shoyy saatulacion; we obtain

(1) oy ) =mp  (0) = (D)o (),  (2.12)
and

(x+i)of (x) = np (x) = (p+l)o . (x) (2.12")

n+!

Of special importance are two linearization for-
mulas for the product of two members of the CON
ek =

n

2/ Dnok - 0n+k T Phtktl s (2.13)
and

* = LAY
W o0 = Pk T Py * (2.13'3

In addition to the results cited in [3] one can
easily calculate the relations

|

N SN 0 (5221)

( =
o, (x) on(y) e 0 GH

and

* =1 1
b ) (y) = —=b . o @xHl 2.14"
" P /;i(y-x) ol . .

?itectly from the definition we can get a generat-
ing function for the sequence [p } :
n

Eop 0 et ot

0
_q N0 . » 12| 1
- ﬁl—[l'” 1 i:- | i
(2.15)
and
; o (x)z 0= = 1 | I 71
-l L
n=0 /i z-l) -“_} i

(2.15")

Now let § be the differential expression de-
fined by

su(x) = = [(x*1)u(x)]" +xux), (2.16)

then we have the linear first order differential
equation

Se, = (2n+1)1i P WEZ . (2.17)
with

s2u(x) = S(Sulx)) = (x241) u"(x)+ax(x2+)u' (x) +

(2% 41) u(x) (2,16")

from (2.16) it follows at once, that the functions
o are solutions of the linear differential
equation of second order
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52 i B -(2nd1)2 ps M€ 2 . (2.17")

Similarly, as in the case of the functions en(x)=

el“X, n € Z, we can consider (2.16') from another

point of view. Let

s?u + (2o+t)%u = 0, n €Y, (2.18)

then from the conglderations above we See,that the
set {0p y n)) forms 4 fundamental cyotem  for

(2.18). We return to this result in the section 5.
Let R denote a right inverse of 8§, i.e,

SRE = £

and let vy = Rf, so y is solution of the differen-
tial equation -

The solution of this inhomogeneous linear differen-
tial equation of first order is

w

X I
g(x) = (x2 +1)° /2[ £ OE(E) (£241) l2g¢ 4 c] , CG,,
x

The special solution with C =0 1is denoted by

R, so that

o | o !
REG) = G0 2 1 s+ 2 4 (2.9

X

3. THE TRANSFORM

As the Wiener-laguerre-transform (WLT) of a

function f we define the sequence of Fourier coef-—

ficients of f with respect to the CON (g, } st

3

t(g] () = F) = [/ £(e) p (D)de, n€2Z, (3.1)

«rm
if rhe integrals exist.

Let Ck(R) = :Ck, k€N with €® = ¢ be the

.

gpaces of functions with continuous derivatives

up ko the order k. Then we conside} th§ fgllgiing

original spaces of functions., Let v>0, then

g -
B, = tErfec®: fDwy-0eh T, G2

itl +m, § =01 ek ]

and

ﬂ“ti_v). lels o),

3.2")

n

£, (0 fely | (R £

where Ly ; C(R) is the space of locally integrable
functiond “6n the real line. Obviously we have

0 1 k k+1
E,D E,DE>D...5E > E =~ D.... {3.3)

Remark : In the following all results are

formulated in the largest spaces in which they are
valid.

From (3.1) we get the

THEOREM 3.1. Let f£¢€ E . Then 7[f] exists, © is
a linear transformation . If f g E% then

Fm) = 0(ln] ), n>te (3.4)

For the proof we refer to (3.1) and (3.2) and from
the first of these formulas we get (3.4) by means
of integration by parts, using (see Dll, 1.2,6,4.)

(x+a)P

S © 3 L S
(q-1xetb) T

P
(x+a) i
(x+b)®

(471) } )7

p-1
_P_I(A_“d)_dx

In preparation for an inversion formula we
want to remark, that instead of (3,1) the Fourier
coefficients (in the usual notatiom) are the num—
bers
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w "
(E, n) = S E(t) oy (t) dt.

Because of (2.6') and n € Z we can choose the

definition (3.1), but one has to be careful in

formulating the inversion formula in the Hilbert

space 12(R), that is the Fourjer expansion of f
ith t to the CO 0 !

with respect to the CON (o ) N From iZ'Q ]wg

' N A,
get lmmeA{atElT ﬁﬁ[ ﬁll

f€ Ly(R)

f(x) = -

1 3

F(-n-1) nn(x). (3.5)

The validity of the inversion formula (3.5) in the

' .
sei o orloary ComBTEanD 1118 dusly Fro
(2.8) and (3.4) :

THEOREM 3.2. Let f € F% and F = z[f] then the
inversion formula (3.5) holds and the convergence
is absolute and uniform.

Remark : With the help of (2.6') instead of
(3.5) we can write

.'n
f(x) = T 7T(a) p: (x) {3.:5%)
n=-m

and Theorem 3.2 is also valid.

A connexion with well tabulated integral
transforms can be derived in the following manner:
Let z be the z -—transformation of a  sequence

oo .
a = that is
[an}n=O "

-

zfa] (@)= £ agz : (3.6)
n=0

and y the Stieltjes transformation, defined by

— , larg(x)| < n (3.7)

ve] o =J £08) 4
0

Furthermore let F+ resp. F be the restrictions of
F =[f] to N, resp. N-, then we have(first of all
purely formal) by means of the generating function
(2.15)

2[Fl = Fee)(s 2™ o () ab =
= n=0 ”

T / £(t) dt

fr(z-1) o i(lizjf[

-2

iz ret - 14z
= ——— [y[f](a)~ y[f(-t)] (-a)} , a = i 2
/TT( 1—2) J a a 1 s

Analogous by means of (2.15") we have

‘0 w

dM 1Y = feeis » Y a -

T omW

mo(z=1) - T2

1z

(1(1+1)

y(£](-a) - y[E-0)] (@7} .

Let f€E, then from (3.1) we get immediately that
F(n) = 0(1) if n tends to ¥ =, Therefore the z -
transforms z[Ff] and 2z[F] exist for all z with
z[]> 1, With z =" rel®, r > 1, and N = 14 2 -
2rcos 4>0 we have

id
. l4re” —1 ]
a=i— -y (-2rsind + i(1-r2))

l-re?

and therefore Im(,*.a) < 0 if y>1 that is

(=) ) A
iarg((f)a)]<ﬂ is satisfied and hence the Stieltjes
transforms Y[f(t t)](t a) exist.

S [ Summarizing the
consideration above we have the

THEOREM 3.3, Let f€ E,and F' resp. F.,the res-
trictions of F to Ny resp, N , a= i %ii » then
-2

ZIF(t)i(Z) S sl

q) st r -
= gl (yar- vlee] (g an,

[z]>1. (3.8)

= 31 -
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Because of y [f] = L[L[F]] one can use the
tables of the Stieltjes transforms (see for exam-
ple {2], vol. 1) as well as the tables of  the
Laplace transforms ([2], vol, I). Tables of z -
transforms are contained in [10].

4, OPERATIONAL CALCULUS

For applications of the WLT the operational
rules are of great importance. From (2.7) and (2.
6') we have

p{E=0)] () = -F(-n-1) (4.1)

Integrating by parts by means of (2.11) resp., (2.
12) we can derive

t[e'] @) = & [Qot)F@-aF(@-D-(+DF@+D],

(4.2)
f € E\l’ »
and
tlx (0= W DF@H)aF(-D-F@], )
1
£€ I'Z\J .

From (2.16) and (2.17) we have by means of inte-
gration by parts the differentiation rule

Proposition 4.1, Let f€E

1 and S the differen—
tial expression of (2,16)

Then Sf € ES and

r[sf] (n) = =(2n+l) iF(n). (4.4)
By complete induction we have the

k 0

Conclusimé4,l, Let f € Et_'_k. k € Ng, then S f€ Ev
r.k .1k ¢

r[8°¢] () = [-(2n+D)i] "F(n). (4.4")

Conversely with the notation of (2.19) we have
for the right inverse operator R of S the

1
Lemma 4.1. Let f € Ey Then Rf € E; and SRE = f.

Proof. From (2.19) and f € C we have RE€ C! and

RE(x) = 0|%]"! as x =+ + . Now we have

[RE(x)]" = =2 (2 fgf(t)(tzﬂ '1/2d
x4+l x%41 [x ; t+C]+f(x)}

——
and thirefore [Rf(x?] - Q(ﬁ ] ST i s, hénce
Rf € Ej.

From Proposition 4,1 and Lemma 4,1 we alse have
the

Conclusion 4,2, Let f € Eg

n and k€ Np, then we
have the integration rule

k .
C[R f] (n) = (E}l-)k F(n). (4.5)

The congtruction of 4 convolution 1A khe ori-

ginal domain will be prepared by a generalized
translation overator Ty , y € R, fixed with
domain E{ and

1 £ (xv-i-l) .

(x, O)(x) = =

(4.6)
/;r_i(y-x)

Proposition 4.2, Let f € E}. Then for each fixed
y € R the opérator 7y is a linear operator of
E) into E) and the formulas

. o: (x) = o: (x) on(y) 4.7

"-[ny] (m) = F(n) o (y) (4.8)

are satisfied.

Proof. From (4.6) we have immediately, that 1y is
a linear operator of E; into E;. Also (4.7) fol-
lows from (2.14') by taking the complex conjugate.

Substituting t : = (xy#l)/(y-x) and using (2.14)
we get
Lo . (Et%)
o =
r.[ryf] () r—3 £(t) ——1*'—-—@ Ty dt =e, () Fla)

In terms of the operator T we are able to define

a convolution in E, by

(%) (x) = [ £(6) T g(x) dt. (4.9)

- 39

Rev. Téc. Ing., Univ. Zulia Vol. 9, Mo, 1, 1986



Theorem 4.1 (Convolution Theorem).let f 1§ € E‘i,

Then ﬂg E E? and the convolution is commutative‘
a800014t1v8 and distributive.

Furthermore we have

r[fxe] = Fe. (4,10)

Proof. From (4.6) we conclude, that also (r f) (x)
is 0(]«cl =1} as |t|+sfor each fixed x € R and
therefore the integrand in (4.9) is 0(t™2) as t -+
® , that is, the convolution £*g exists,(bviously
1t belongs to E!(‘ too. From the theorem and (4.3)

e Nave

P

=/ ff(t)Ttg(x)dtpn(x) dx =

-

z[f*g] (n)

"

I ElE) S (rtﬁ) (x) nn(x) dxdt

- -

=6(n) / £(t) on(t) dt = F(n)G(n)

As usual, working in the image domain, one can
derive the properties of the convolution stated
in the theorem.

Similarly the convolution in the image domain
depends on a generalized translation operator Tk'
k € 2, fixed, defined (see (2.13')) by

1

(T,F) (n) = —— [F(n-k)-Fln-k-1)]. (4.11)
' 2/

Here we have

Theorem 4.2. Let f € E_ and F = v',[El. then the

equalities

Tk by = pupk* ; (4.12)
and

f.'lETkF] - ¢ D: (4.13)
are satisfied
Proof. The first of the resulrs follows directly

from (2.13"), From (4.11) and (2.13') we have

- 33 -

o

&
fe = 11w 0, (0 -

L e 6.
2

: Oy (O] dt
" -0

= L [F(ak)-F(neke1)] = (1,0 (x).
2vn

Hence (taking ';-1) the result (4.13) follows.

By means of the operator T, we define a convolu-
tion in the image domain by

(F& C)(n) = T

F(k)T, G(n) . (4.14)
k=~w

7lg|. Then F&® G exists and the convelution is
comutanve, associative and distributive,Further-
more we have for f € E‘i (or g€ ES)

Theoremhl Let £, g€ ®l and ¢ =[], ¢ =

rlfg] = F® ¢, (4.15)
that is

o Fed - (4.15")
Proof. From (4.11) and (3.4) we conclude, that

F(k) and T, G is O(|k{)~! as |k|+e and there-
fore the sum at the right hand side of (4.14)
exists, With the help of (2.13") and (3.5") and
because of f € E we have :

©

effgl(n) = 7 £(e) g (&) o (v) de =

Jglo £ OFW o (8) o (£) dt
= k=-2 k H
= I Tk} J g(t)e* (£) p (r) dt =
k=—x - u
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" kEﬂF(k] [ e®).o, (-0 (0))ar -

£ F) —= [6(n-k)- C(n-k=1)]

k==2» 2V

&

w

= 1 Fk(TkG) (n) = FxG

k:-w

5. REAL VERSTON

Analogous to the theory of the Fourier trans-
formation where, besides of the complex version
exist real transforms (Fourier-sine and Fourier-
cosin-transforms), we would be able to give a
real version of the Wiener-Laguerre transformation
We include no formulas for the transforms,but,
following Christov [3], only some definitions and
results on the kernels.

) Instead of the complex valued functions Py
Christov considered the real valued functions $

”_0 forms a CON in
n—-

L2(R). The set fsn,c I forms a realwvalped fumda-
mentad GYOLCH £OT L0 1N0AW Meond order  4ir.

ferential equation (2.18). From (2.6) we find
that the behaviour at T = is given by

we see, that the set (S ,C )
n

2 -1
8 (x) ~ -d/;: P T T (5.4)

. - R

Cn(x) “f »/% (2n+l):«<-2 . (5.4")

Analogous to the sine- and cosire~ functions,
the § are odd and the C_ are even functions., The
recurrences (2.11, 11', "12) and the linearization
formulas (2.13, 13", 14, 14') can be transferred
to the real valued functions Sy and C, and there-
fore the results of the gections 3 and 4 can be
translated to transforms of the type

fg [£] (n) = { 8, (0 F(x)dx (5.5)

and

’ o
c hi . " n
e W ich are connected with 0y by Ea [F] () = é Cn(x)f(x)dx 5.5")
g = (5. 5 1)/i/§ . e 2 (5.1) We will not explain this in detail.
n n -n-
¢ = (b, —o_ ! Y2, n€z or (5.1")
N 6. CONCLUDING REMARKS
o = 0 S ) LE 7 (5.2) ~ The WLT with the complex valued functions
L G H 2, in the kernel investigated in this paper can
of course be generalized to suitable spaces of
generalized functions. For applications, specia-
11y for original functions defined in R* only, th
. g : £ only, the
ecause o WLT with the real-valued kernels Sy resp.Cy (;hen
the originals are to be continued cdd resp, even
to R™) is of interest. These problems and some
applications are considered in two following
S =S.12€, = C_ o+ ne€l (5.2) papers.
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