17 
Gonzalez Freites et al.  
 
_____________________________________________________________________________________________ 
Rev. Téc. Ing. Univ. Zulia, 2024, Vol. 47, e244709 
 
Bevc, D., Mali,  G., Milliken, W., Nihei, K., Shabelansky, A., Zhang, Z. (2022).  Geomechanical Interferometry: 
Theory and Application to Time-Lapse Interferometric Synthetic Aperture Radar Data for Separating Displacement 
Signal Between Overburden and Reservoir Sources. Journal of SPE-OnePetro. SPE J. 27 (06): 3773–3782.  
 
Briceño,  L.  (2009).  Modelo  estructural  y  estratigráfico  basado  en  la  interpretación  sísmica  3D  del  yacimiento 
Lagunillas inferior LL07. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería.  División de Postgrado. 
Maracaibo, Venezuela, 31-60. 
 
Casu, F., Manzo, M., Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface 
deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(1-2), pp.195-210. 
 
Chrzanowski,  A.  and  Chen,  Y.  Q.  (1991).  Use of the  Global  Positioning  System  (GPS)  for  Ground  Subsidence 
Measurements in Western Venezuela Oil Fields, Proceedings of the Fourth 
International Symposium on Land Subsidence, No. 200, 419- 431. 
 
Ferretti,  A.;  Prati,  C.,  Rocca,  F.  (2001).  “Permanent  Scatterers  in  SAR  Interferometry”,  IEEE  Transactions  on 
Geoscience and Remote Sensing, 39, 8-20. 
 
Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M. (2008). Petroleum Related Rock Mechanics, 2nd Edition. Elsevier. 
Amsterdam, The Netherlands, 391-426. 
 
Gabriel, A.K., Goldstein, R.M.,  Zebker, H.A. (1989). Mapping small elevation changes over large areas: differential 
radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191. 
 
Geertsma, J. (1973). Land Subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology. 
No. 03730, 734-744. 
 
He, J., Li, H., Misra, S. (2019). Data-Driven In-Situ Sonic-Log Synthesis in Shale Reservoirs for Geomechanical 
Characterization. Journal of SPE – OnePetro. Res Eval & Eng 22 (04): SPE-191400-PA, 1225–1239. 
 
Leal, J. (1989). Integration of GPS and Leveling for Subsidence Monitoring Studies at Costa Bolivar Oil Fields, 
Venezuela. Technical Report No. 144, University of New Brunswick, 18-89. 
 
Li, B., Khoshmanesh, M., Avouac Jean-Philippe. (2021). Surface Deformation and Seismicity Induced by Poroelastic 
Stress  at  the  Raft  River  Geothermal  Field,  Idaho,  USA.  Geophysical  Research  Letters,  48,  e2021GL095108. 
https://doi.org/10.1029/2021GL095108, 4-9. 
 
Liu, G., Tong, J., Wang, X., Xiang, W., Yuan, H., Zhang, C., Zhang, R., Zhang, X., Zhang, Y. (2023).  Geodetic 
imaging  of  ground  deformation  and  reservoir  parameters  at  the  Yangbajing  Geothermal  Field,  Tibet,  China. 
Geophysical Journal International, 279-394. 
 
Lundgren, P., Usai, S., Sansosti, R., Lanari, R., Tesauro, M., Fornaro, G., y Berardino, P. (2001). “Modeling surface 
deformation observed with SAR Interferometry at Campei Flegrei Caldera”, J. Geophysical. Res., 106, 19355-19367. 
 
Ju, X., Yang, J., Yang, Y., Xu, L. (2023) “Influence of geological factors on surface deformation due to hydrocarbon 
exploitation using time-series InSAR: A case study of Karamay Oilfield, China”, Journal of Frontiers in Earth Sciences. 
10.3389/feart.2022.983155, 6-12. 
 
Murria, J. (1991). Subsidence Due to Oil Production in Western Venezuela: Engineering Problems and Solutions. 
Proceedings of the Fourth International Symposium on Land Subsidence, No. 200, 129-139. 
 
Murria, J. (2007). Ground Subsidence Measuring, Monitoring and Modeling in the Costa Oriental Oilfields in Western 
Venezuela: The Last Fifty Years, 8th International Conference “Waste Management, Environment Geotechnology and 
Global Sustainable Development (ICWMEGGSD’07-GzO’07)”, 337-372.