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ABSTRACT 

In the real domain , a basic analogue of a simple form of Sturm­
Liouville equation of the second order is studied, and i t is shown 

that, with proper boundary conditions, its solutions are orthogonal 

with respect to basic integration. Basic functions which are 

analogous to the sine and cosine are briefly discussed and are 

utilised in an investigation of the conditions that solutions of the 
equation under consideration should be oscillatory . Final1y, it is 
shown that an arbitrary function may be expanded in a series of 

basic eigen-functions. In the limit as q, the base, tends to unity, 
we recover results which are well-known in ordinary Sturm-Liouvill e 
theory. 

RESUMEN 

En el dominio real, una analogía básica de una forma simple de la 

ecuaci6n de Sturm-LiolIVille de segundo orden es estudiada y se muestra 
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que, con condiciones de contorno apropiadas, estas soluciones son ortogonales 
en el sentido de la integración básica. Las funciones básicas, las cuales son 

análogas a seno y coseno, son brevemente discutidas y son util jzadas en una 

investigaci6n de las condiciones tales que las soluciones de la ecuación sean 

oscilatorias. Finalmente, se muestra que una función arbitraria puede ser 

expandida en una serie de funciones propias básicas. En el limite cuando q, 

la base, tiende a la unidad, obtenemo resultados que son bien conocidos en 
la teoría ordinaria de Sturm-Liouvillc . 
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1 . INI'ROlJUCfION 

In a long series of papers , F. H. Jackson has studied baslc analogu s 

of differentiation and integrat íon and various analogues of special functions. 

See, fOT example, [8J and [9J; a complete ljst of Jackson's papcrs is given 

in [lJ. 
Instead of the usual number sys t em, a sys tem of what is referred t o ~ s 'ba s t e 

number' i s employed. Such numbers are defined by the rela tion 

(1. '1) 

Where q is any number, real or complex, called t he base . Tt will be seen t hat , 

corresponding to the sequence of positlve int egers 1, 2, ... . , we have the 

sequence 

[ lJ =1 , [2J =1+q, [ 3J =1 +q +q 2 ... , 

2 n- llnJ =1 + q + q +.. • + q 

In [8J, page 255, Jacksonintraduces the operat -LVC symbol {I, def ined bv 

ljl Cqx) - <p (x),
{I, { ljl ex) } x (q - 1) el . 2~ 

Which becomes t he same as ord inary di fferent iat jon in t he limi t as q t ends 

to lIDity , similarly, he defines basic ~ntegrat l0n as the inverse oE bas i 

gifferentiation, employi ng the symbol ~, which r educes In he l imit to 

~ These operat ions correspond exactly , i n every way , t o c1jfferent iation 

and integration. In arder t o avoid poss iblc, confusion wi t h the usual 

difference operator 6 , we employ the symbol B a mean baslc di f fe r nt i tíon, 

and amit the base and independent varj able pr¿x ided that this do s not lead 

to any possibility of m-sund rs t andj ng. 

we have the fol l owing elernentar y ~esul ts: 
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n.- l '"Bxn = [n] x and B E q (ax) = a. E q (ax) 

00 

m 

where Eq (x) = L _x_, [m] != 11J [2] [3J ... [rn] , 


m=o [m] ! 


and corresponds t o the exponential function . The basic analogue of t he 

different iation of a product is used later and is: 

B { u(x)v (x) } = v(qx) 13 11 (x) + u (x ) Bv (x). (1. 3 ) 

The rnain purpose of this paper ¡sto establ j sh a bas ie analogue of t he 

second order Sturm-Liouvi11e system, [6J, and to discuss a few of its 

properties. It i s assumed in wha t follows that a11 quanti t ies and funet ions 

are real unless otherwise stated and that 0< q ~ ,. 

Z. A BASlC ANALOGIJE Or: THE S'I1JRtl1-L IOUVJ LE SYSTEM 

Theorem l. 

Suppose that t he base q is real and such tha t O < q ~ 1, and t ha t t he 

real funetions r (x), 1 ex) and w (x) posscs. the appropriate mnnb r of q­

derivatives on the int erval a~ x ~ b, and let y (qx) and y (qXJ be 
m -..... _........ n 

eigenfunctions corresponding to dis t inct cigenvnlues / m, / n of t he 

boundary value system 

A '" 

B { r B y ex) } + (1+/ ---w) y (qx ) o, ( 2 • 1) 

and k,y+kZBy = o at x = b , 

h, ,hZ,k, and kzbeing eonstants . 

ThenYm(qx) and yn(qx) are q-or t hogonal in t he interval a .$..- x < b wirh 

respeet to the weight func t i on w ex) , t hat is 



-89 ­

b 
J w ex) Y (qx) yn(qx) d (qx) = 0, m#n. (2.2)m a 

Proof . y (x) and yn (xl Satisfy the equations-- m 

'" '" 
B(rB}m ) + (l+/mw) Ym (qx) = O (2 . 3) 

.... '" --,....
and B (rBYn) + (1+ / nw) Yn (qxJ == O ( 2.4 ) 

respectively multiply (2 .~) and (2.41 by Y (qx ) and - Y qx) and add: n m 

~ ~ A A 

(/m- / n )w(x)Y (qx)Yn (qx ) = Y (qx) R (rBy ) - Y (qx) 13 (yBy ) (2. S)
m m n n m

Consjder the expressiol1 

A " 

B { rB(y' ) . \T -Yri (X ) v } (2 . 6) n ' m m . J n ' 

which, on expansion by rneans of (1.31, becomes 

" 
Y (qx) B (rBX ) + rE (y ) B (Y )
m n m"n "" 

- Y (qx ) B (yEy ) - r B (v ) E eX ) . (2 .7 )n m 'm - n 

This is i denti.cal with the right-hanJ member oF (2.5), so that 

(Tm- Tn ) w (xh (qx )y (qx) = m -n 
" A A 

B { rB()n ) ')ffi - r13 ( )~) ·Yn ). (2 .8 ) 

lf we q- integra t e with respcct to qx be ween t he limits a and b , the r sult 

b A " b 
(/m- In) J w(X)Y (qx)Y (qx) d(qx) = r J3(Yn )' Y -rB(ym) ·Yn I (2 .9)

rn n m a a 

follows irnmediatelly. The right-hand membcr of (2 _9) 1. S interpyet ed in t he 
A '"form 

r ( a ) { B(Y~ )} aYrn (a) -r(a ){ B (Ym hYn (a) 
(2 .10) 

-y (b){ B(Yn)}bY (h ) +r (b { 13 eY ) b)'n (b) , 
A' A 

m m 
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which clearly vanishes as a consequence of the boundary conditions.Theorem 

1 is thus established. 

If r (~) = O or r(b) = O, then either the first or the second boundary 

condition respectively may be dropped . In particular, if r Ca) and r (b) 

both vanish, we have the interesting case that the property of q-orthogonality 

then holds without the imposition of any extrinsic boundary conditions. 

Theorem 11. 

Tf the basic Stunn-Liouville system f Theorem 1 sat isfies the condi tjons 

stated therein, and if the weight function w ex) is ei ther positive throughout 

the: whole interval a~ X$. b, or negative throughout t he same interval, then 

a11 the eigenvalues of the system are real. 

Proof. 

Let!" = el + i 6 be an eigenvalue of the problem and suppose that y(x)=u(x) + 

iv (x) is the corresponding eigenfunct i on . The qURntities a and 8 and the 

ft.mctions u and vare all real , We then have 

"A '" 

B (rBu + irBv) + (l+aw + i B w) [u(qx) + -Lv (qxJ] = O (2.11) 

This equation is equivalent to the following paír of equations by separat ing 

the real and imaginary parts : 

... 
B (rBu) + (l+crwJ u (qx) Swv (qx) O (2.12) 

1\ " 

and B (rBv) + (l+aw) v (qx ) + Bwu (qx) O (2.13) 

Hence, it follows that 
2 2 A A. A 

-6 {u(qx) +v (qx) }w=B{rB(v ) .u-rR (u) .v}, ( 2 .14) 

Again carrying out the process of basic int gration betwecn the limits a and 

b, we find 
b 2 2 ~ A b 

- B f {u(qx) + v(qx) }w(x)d(qx) =r {B (v) .u -B(u .v} ( 2 . 15) 
a. 

Utilising the boundary conditions, we see that the right -hand member of 

(2.1 S) vanishes. 
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However, since y (qx) 15 an e igenfunct ion , u(qx) 2 + v(qx)2 $ O. 

Since y and w possess at least two q-derivatives, and w is either greater than 

OI les s zero for all x -in the interval a~ x~ b, the q -integral on the left of 
~ .

(2.15) does not vanish . Henee, 6 = O, and / = a and lS real. This comp ete 

the proof of Theorern TT. 

3. A BASIC ANALOGUE OF THE SINE AND COSINE 

Consider the q-di fference equat ion 

A '? ')

D"" y (x) + 1" y(qx) = O, (3.1) 

which is the simplest special case of (2 .1) . By a st raightforward series 

deve1 opment of the solut ion of this equation, \\fe obtain the two ' ndependent 
..... '­

solutions S 
q 

(/ x) and e 
q
(/ ;~ ), 

where 

00 n n2 2n+1 
( - 1) 9 xS 

q 
ex) = I (3.2 ) 

n=o r 2n + ll : 
00 

( 1)n n (n-1) 2n 
and e q ex) = I - 9 x 

n=o (3.3)~~ 


These two flmctions reduce respecti vely to sin x and cos x as q 4 1. 

By means of a nurner ical invest i gat ion they have been shown to be 

oscillatory f or all real value - oí thei r argum nts. The PUll10se of 

mentioning these func tjons here is that it is necessary to refer t o th m 

later in discussing the oscillatory nature of solut ions of equat ion( 2. 1) . 

In passing, we note t hat S ex), fo r 
q 

example ,poss sses the orthogonalit y 

property 
s . 
s {Sq(/mqx)o Sq (lnqx) d (qx) = O, mln; (3.4 ) 

S is t he first positive zero oE Sq (x) . 


Also, the two flIDctions Sq (x) and Cq (x) are qui te di st inct íTom t he bas ic 




analogue of the tri gonometrical funct ions wh ich have been studied by prevlOUS 

authors. See í 7] and -5J , ror i nstanee. 

4 . A BASTC ANALOGUE Or: TIrE SEPARATION llIEORE 1 

Consider the q- differ ncc cq\lati on 

B f K R y} - Cy(qx) o, 	 (-L 11 

where the ftmetions K :mel r; ar - continlloUS on the L"l osc inte r al a~ x :::.h. R, ' 

Teasoning whieh is exaetly paralleJ to tha t employed wJ1en di scuss ing thC' 

corresponding case fo r ordinary difFcrenhal cquations , [bJ , i t follOlvs tha t 

(4. 1) has only one continuous soluti on wi th [:¡ cont inuolls bas ic der iyatíw' whi ch 

satisFies the initial eond it i ons 

y (e) = Y , (By ) = '{,
n e 

where e is any point in t he clased ínte r al <1 "-:: x< h. AJ so, it can be shown 

that no continuous sol utiOl l o f (4. 1) ' an have an inf ini tc mmlb r of zeros in 

a~ X~ b without itself being iJ.ent i 'a lly z~ro. We no\V proceed to es tabl i sh 

the q -analogue of the sepa rR.tion t h orem of t hc zeros of independent sol uti ons 

of (4.' J . 

Let y,and Y2 he two r eal , l inea rly indcpcndent soluti ons f (4 .11, such that 

y 1 vanishes a t least tw ice í n t I e j nt ervaJ a:: x os. h . Tf xl and x a re' two 

conseeutive zeras of y, in that i nt erval , thcn it 1S pr oposed t ha t v) \'éUli shes 

at least once in the open i n'i rVrll (x 1 ,x2). Fir s t of all, v2cannot van i s h 

at Xl or at xz' since 1. t woul J then not be independent of v l' Su P 0Sl' t hat \' ') 

does not vanish at any poi.nt o C ( x l' x2J· Thc h actian "1/ '" .= LS continuous 

and has a eontinuous ¡-der i V<lt i ve In (xl ,x 2), Hmllevcr, \ note t h:lt 

yz 	 r. Yl- Y1B Y7 

Y2 i Z(qx ) 

and the nLunerator of this rraclion js the has ic analogue of the Wronskian 

of Yl and Y2' which does not vanish at any po int in(A1 ,xZ ). HE"DCe, t hi s 

contradiction shows that yz must have a t 1 ~st one zeTo be tween xl and 
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Xz. There cannot be more t han one such zero because i f there were two , 

then Y1would have a zero between x and x which would no t t hen be1 2 
consecutives zeros of Yl' Thus t he zeros of two real linearly independent 

solutions of a basic linear difference equation of the second order 

separate each other . 

S. A BASIC ANALOGUE O STURM' S RJNDAMENI'AL OSCILLATION THEOREM 

Let u and v, respectively, be solut ions of 

B { K É u} G1 u (qx) ° (5.1) 

A A }and B { K B v - G2 v (qx) = 0, (5.2) 

where G ..L G in a ~ x ~b, but G is not the same as GZt hroughout t he whole1 Z 1 
interval. Multiply (5. 1) byv (qx) and (5.2) byu (qx) anJ subt ra t , hen 

we have 
A A A A 

B { K B u} v (qx) - B { lG3v} u (qX)=CG1-C2)u qx) v (qx) . (5 .3 ) 

Consider 
A A ..... '" 

K (vBu -uBv) = { KBu } v -{ KBv} u 

Expand by means of Jackson' s fo rmula (1.3 ) and btain 

K ( Bu-uBv) = v (qx)B {KBu } + {KEu } Bv 
A /" A ~ 

-u(qx) B { KBv} - { !\Bv} Bu (5 .4 ) 

This is t he same as the left -hand member of (5. 3). Hence , jf we q-integrate 

(5.4 ) between the l imits x1 and x2, i t follows t ha 

x 

[ K (VBU-UBV~ : : I 
2 

( , - G2) u (qx) v (qx i d (qx) . (5.5)
X1 
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By hypothesis , q is real and po itive and such that 0< q~ 1. Let x, and 

x2be two consecutive zeros of u and, in the first instance, l et v have 

no zero in (x" x2) . Without 105s of general i ty, i t may be supposed that 

both u and v are positive in the interval (x" xZ)' The right-hand member 

of (5.4 ) is then definitely pos i tive. On the left hand 5ide, u is zero 
" 

at xl and xz' B u is positive at x,and negative at x2and v is p05i t ive 
at both limits. The left -hand member oE (5.5) lS therefore negative and 

his contradiction shows that v vani shes a t eas t once in (x1,xZ) ' 


In particular, if u and v are both z r o a t x" i t is evi dent that v 


vallishes before the conseclltive z ro of u appears. Hence, v os illates 


more rapidly than u. A conveni nt bas i c analoQ"ue oí Picone 's fo nnul a 


does not appear to exi s t , so t hat a mor e general oscillat i on theorem has 


not, so far, been obtaineJ. 


We now discuss conditions that t he solutions of (4 . 1) may or may not be 


oscillatory. 


Suppose that, in a~ x~ b, 


and C; :? G ::;, 9 

The first comparison equa !ion i s 

A '" 

B { Q By} -g y(qx)=O , (5. (1) 

"' 2 
n I' B Y - ª /~ y (qx ) = o. 

Solutions of (4. 1) J o not oscillate more rapidly t han t hose of (5.7), whid1 

latter is i mmediately q- integrable. 

(1) lf g=O, he comparison sol ution of (5. 7)may be t ken to be equal t o lmi t y , 

so that, if ª.20 , the sol lltions of (5.7) are non- osc i llatory for non-pos i tive 

values of x, t hat i if G 2 0 in asx .::;.h , then the solution o [ (4 . 1) are non ­
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oscillatory in that interval provided that no posi t ive value of x is included . 

This arises because the basic exponent ial funct ion E (x) oscil l ates for posit i ve 
q

real 	values of x. 

I-g 
(ii) Suppose that ~ < 0, when we have t he oscil l atory sol ut ion Sq{ ~ - /k x } of 

(5.7). Let the positive zeros of S ex) be al' 0. 2"" r " " Consecut ive zeros 

of solutions of (5 . 7) are a ' -1 ~ and ct 1-7?79, 50 t hat. if a > ct -1 lk79 and
1 'J - ~/ª T~ ~'~ r ~:/~ 

b< ~-~/ª, no solut ions o[ (4. 1) can havc more t han one zero in t he interval as.. 
x$. b. 

Consider now the second compnri on equat i.on 

B { K B '" 	 '" y} Gy (qx) 0, (5.8) 

,, ) 

or B~y - g /K ¡ (qx ) o. 	 (5.9) 

Then the solutions of (4. 1) osc illate at least as rapidly as t hose of (5 .9). If 

G is negative , the solutions of (5. 9) are o.c illatory and consecutíve zer os are 

a -1 ~-K/g and a ~g. Thus suff icient condi t ions t hat the solut i on of (4 .1) 
r - - r ~ ~/~ 

should have at least m zeras in the jnt erval a:S..x 'S. b are that 

ct < o. I-K/ G and b '> o. r - K/ G . 
y-m "",¡ ~ ~ 	 r ' 

In particular, sufficient condi.tjons t hat (4. 1) shoul d posscs a 501ution which 

oscillates in the interval a 'S. x:::;. b are that 

and b > a 
r 

6 . 	 11-IE DEVELOPMENT OF AN ARBITRARY FUNCTION lN TERMS OF A SERIES 

OF q -ORllI0GONAL FUNcr lONS . 

We 	 may transfonn the q-dif fer enc equéltion 

82 y + f B Y + g y (qx) o (6 .11 

http:equati.on
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by putting Y = u (x) v ex), and obtain 

2 ' "2 1'" '" '" '" 
u(q x) B v + {(1 + q ) Bu (qx)+fu (qx) } B v+ { B2u + fBu+gu (qx)}v(qx) =0 (6 . 2) 

If u is so chosen that 

(1 + (qx) + fu (qx") = O, (6 . 3 ) t ) ~ u 

Then we obtain the nonna1 fonn of the difference equation (6.1). This is the 

basic analogue of the process of finding the normal form of the second order 

l inear ordinary differential equation. We may , t herefore , wi t hout 105s of 

generality, confine our di5cuss10n to t he normal fo rm of the basic S urm -

Liouville equation (2 .1 ). 

Consider the normalised eigenfunctions of the system 

"2
B u + { e2 - g(x) } u (qx) =0 , 

'" B u- h u = O at x =0 
A (6.4 )

and B u+ H u = O at x =1 

in relat ion to the formal expansion of the arb "t rary funct l on f ( ) in the form 

7 
f (x) = ¿ uT (qx) r f (t) (qt ) d (qt ). (6. 5)ur

r-l ) O 

we recall that OUT inve5tigation 1S appl ied to t he real domain onl y, and that 
O<q ~ 1. 

we may wri t e 

7 
f (t ) UT (qt) d (qt) f (t ) . E2 ur (t) d (q t ) fo 

e~ - g(t) 
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= - r- f(t) B { f et ) }. { Bu (t) } d (qt )2 rle;-g(t) e -g (tJ qtr 

f (t) 
2 

er-g (t) 

1 

o 

1 
q } d (qt) 

_ Hf(1) ur (1) hfeO) u (O ) 
+ r + _q1 [ ur (qt) B { f (t)2- 2 2 e _g (t )e -g (1) er-g (O) Tr 

1 (q t ) 82 { ~f-->-(t'""-- (qt) . ) -} d 
q 2 e _g (t) 

r 

(6.6) 

This is a consequence of the hasic analogue oE integration by part s obta ined 

by inverting equation (1.3). If [ and g are both continuous and possess 

continuous first and second q- derivatives , t hen 

e2 B { f (t) } 2 A2 f ( t ) amI e B { 2 }e; -g (t) cr-g ( t ) 

are both bounded for suffi.ciently large values of e and for all t in the 

interval O~ t ~ 1. 
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we see that the SerleS (6,5)converges uniforrnly ln this interval by the 
M-test. 

Let the sum of the series(6 .S) be denot ed by ~ (x) so t hat 

JI (1 
ljI (x) u n (qx) d (qx):: 

00I ur (qx)u n (qx) d (qx) J ur (qt) f(t )d(qt) 
r =l o o 

= f: u n (qt) f (t) d (qt ) , (6.71 

because the functions {u (q t)} cons t i t ute o q-orthornormal set o Hence . 
r 

f: { 1jI (x) -f (x) } u n (qt ) d (qt)=O (6 ,8 ) 

for al1 n, and so \f (x)=f(x), and it rollows that the expansion (6 . 5) i s 

convergent in t he interval O S. x ~ 1 . 

7 , CONCLUS ION . 

The discussion of the basic anal ogue of the second order Stunn -Liouvi ll e 

system leads potent ially to several new classes of funct :ions whi ch are 

orthogonal with respect t o basic int egration. A basj c analogue of certain 

próperties of the oscillation of solutions of the associat ed q-dif f erence 

equation is also given . Finally , it i5 shown t hat a wide class of func t ions 

may be expanded in series of basi c eigenfunctions. 

Although the equation of q-orthogonal ity has been discus'ed from él 

different point of view by other aut hors, see [4J, far example, any re l ations 

which may exist betwe.n the results implicit here and those obtained elsewhere 

remain to be investigat cd. Tt would arrear t ha t t he interes t ing po i bility of 

introducing a number of new analogues of the class ical or thogonal functions 

arises from the general resul t proved in t he second section of thi s pape ro A 
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few of the properties of a basic Laguerre polynomial which satisfies a q­

difference equation of the type (2 .1 ) llave been investigat ed by the author 

in [2] and [3J and it 1S hoped to develope this matter at greater lenght 

subsequently. All the results given here reduce to the corresponding results 

in ordinary analysis when q -+ 1. 
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