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ABSTRACT

In the real domain, a basic analogue of a simple form of Sturm-
Liouville equation of the second order is studied, and it is shown
that, with proper boundary conditions, its solutions are orthogonal
with respect to basic integration. Basic functions which are
analogous to the sine and cosine are briefly discussed and are
utilised in an investigation of the conditions that solutions of the
equation under consideration should be oscillatory. Finally, it is
shown that an arbitrary function may be expanded in a series of
basic eigen-functions. In the limit as q, the base, tends to unity,
we recover results which are well-known in ordinary Sturm-Liouville

theory.
RESUMEN

En el dominio real, una analogia bisica de una forma simple de la
ecuacién de Sturm-Liouville de segundo orden es estudiada y se muestra
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que, con condiciones de contorno apropiadas, estas soluciones son ortogonales
en el sentido de la integracién bdsica. Las funciones basicas, las cuales son
anilogas a seno y coseno, son brevemente discutidas y son utilizadas en una
investigacién de las condiciones tales que las soluciones de la ecuacién sean
oscilatorias. Finalmente, se muestra que una funcién arbitraria puede ser
expandida en una serie de funciones propias bdsicas. En el limite cuando ¢,

la base, tiende a la unidad, obtenemos resultados que son bien conocidos en
la teoria ordinaria de Sturm-Liouville.
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1. INTRODUCTION

In a long series of papers, F. H. Jackson has studied basic analogues
of differentiation and integration and various analogues of special functions.
See, for example, [8] and [9]; a complete list of Jackson's papers is given

in [1].
Instead of the usual number system, a system of what is referred to as 'basic

number' is employed. Such numbers are defined by the relation

[al = (1-q%) / (1-q), (1.1)

Where q is any number, real or complex, called the base. Tt will be seen that,
corresponding to the sequence of positive integers 1, 2,...., we have the
sequence

[1]=1,[2]=1+q, [3]=1+q+q"...,
n-1

(=1 +q+q° +... +q

In [g], page 255, Jackson introduces the operative symbol A defined by

4 q) ( X)’ ¢ (X),
e (0 ) = B (1.2)

Which becomes the same as ordinary differentiation in the limit as q tends
to unity, similarly, he defines basic gntegration as the inverse of basic
gifferentiation, employing the symbol g, which reduces in the 1limit to

i . These operations correspond exactly, in every way, to differentiation
and integration. In order to avoid possiblu’confusion with the wusual
difference operator A, we employ the symbol B to mean basic differentiation,
and omit the base and independent variable pr%iided that this does not lead
to any possibility of misunderstanding.

we have the following elementary results:
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B x" = [u] X! and B Eq(ax)= a Eq(ax)

[e e}

where B () =1 2, fult= (1] [2] [3]...[,

m=o0 [m]!

and corresponds to the exponential function. The basic analogue of the
differentiation of a product is used later and is:

~ ~ A

B{ u(xX)v(x)} = v(gx) B u (x) + u(x)Bv(x). (1.3)

The main purpose of this paper is to establish a basic analogue of the
second order Sturm-Liouville system, [6], and to discuss a few of its
properties. It is assumed in what follows that all quantities and functions
are real unless otherwise stated and that 0 < q < 1.

2. A BASIC ANALOGUE OF THE STURM-LIOUVILLE SYSTEM

Theorem I.

Suppose that the base q is real and such that 0 < q < 1, and that the
real functions r (x), 1 (x) and w (x) possess the appropriate number of q-
derivatives on the interval a < x < b, and let ym(qx)\and\yn (gqx) be
eigenfunctions corresponding to distinct eigenvalues / m, / n of the

boundary value system

B{rBy (x) } + (1+/w) y (qx) = 0, (2.
h1y+h2By =0Qatx=a
and k1y+k2By =0atx=Db,

h1,h2,k1 and kzbeing constants.,

Then-ym(qx) and yn(qx) are q-orthogonal in the interval a< x< b with
respect to the weight function w (x), that is
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b
[ ow () y, (qx) y (ax) d (gx) = 0, m#n. (2.2)
a
Proof. ym(x) and yn(x) Satisfy the equations
B(rByy) + (1+/'mw) y, (qx) =0 (2.3)
and  B(rBy,) + (1+/ nw) y, (qx) = 0 (2.4)
respectively multiply (2.3) and (2.4) by ¥ (qx) and - % (qx) and add:
(77n-7‘n;w(x)xn(qx)yn(qx) = xﬂ(qx) B (rBﬁ]) - yh(qx) B (ern) (2.5)
Consider the expression
B {rB(_yn). ym-rB ()}n)'yn}’ (2.6)
which, on expansion by means of (1.3), becomes
% (qx) B frljyn-) + 1B (y) B (y.) «
- Y, (ax) B (rBy ) - vB (y ) B (v ). (2.7)
This is identical with the right-hand member of (2.5), so that
(/m-/n) w (x)xﬂ(qx)xi(qx)=
B{rM%)%n-rBu%L%}. (2.8)

If we g-integrate with respect to gx between the limits a and b, the result

b & & b
(Im-7n) S w(x)Xh(qx)xm(qx)d(qx) = rB(g}). Xn-rB(Xn].z] | (2.9)
a a

follows immediatelly. The vright-hand member of (2.9) is interpreted in the

o r () Bly,)Yay, (a)-r(a){ B(y )ay, (a)

L A (2.10)
-1 (B, ) hpy, (D) +r (DI BLy Ipy, (B),
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which clearly vanishes as a consequence of the boundary conditions.Theorem
I is thus established.

If r (@) = 0 or r(b) = 0, then either the first or the second boundary
“condition respectively may be dropped. In particular, if r (a) and r (b)

both vanish, we have the interesting case that the property of gq-orthogonality

then holds without the imposition of any extrinsic boundary conditions.

Theorem II.

If the basic Sturm-Liouville system of Theorem I satisfies the conditions
stated therein, and if the weight function w (x) is either positive throughout
the whole interval ag x<b, or negative throughout the same interval, then
all the eigenvalues of the system are real.

Proof.

Let/= a + i B be an eigenvalue of the problem and suppose that y(x)=u(x) +
iv (x) is the corresponding eigenfunction. The quantities o and B and the
functions u and v are all real. We then have

g (rgu + irﬁv) + (I+aw + 1 B w) [Q(qx) + 1y (qx{] =0 (2.11)

This equation is equivalent to the following pair of equations by separating
the real and imaginary parts:

E (r%u) + (I+ow) u (gx) - Bwv (gx) = 0 (2.12)

and ﬁ (r%v) + (1+ow) v (gx) + Bwu (gx) = O (2.13)
Hence, it follows that

-8 {u(qx)z + V'(qsz}w=ﬁ {rE(VJ.u-rg(u).v}. (2.11)

Again carrying out the process of basic integration between the limits a and
b, we find _
b 2 2 - - g
- B S {u(gx)” + vigx) " tw(x)d(qx)=r { B(v).u-B(u).v} | (2.15)
a a

Utilising the boundary conditions, we see that the right-hand member of
(2.15) vanishes. )
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However, since y (gx) is an eigenfunction, u(q)c)2 + v(qx)2 0.

Since y and w possess at least two q-derivatives, and w is either greater than
or less zero for all x in the interval a< x<b, the q-integral on the left of
(2.15) does not vanish. Hence, B = 0, and 7\= a and is real. This completes
the proof of Theorem IT.

3. A BASIC ANALOGUE OF THE SINE AND COSINE
Consider the q-difference equation

y(gx) = 0, (3.1)

which is the simplest special case of (2.1). By a straightforward series
development of the solution of this equation, we obtain the two independent
solutions Sq(]\x) and Cq(f‘x),

where
o 2
S, = G X:M (3.2)
n=o 2n + 1 (!
o0
and  Cq (x)=1 (17D
n=o n] (3.3)
These two functions reduce respectively to sin x and cos x as q » 1.
By means of a numerical investigation they have been shown to be
oscillatory for all real values of their arguments. The purpose of
mentioning these functions here is that it is necessary to refer to them
later in discussing the oscillatory nature of solutions of equation(2.1).
In passing, we note that Sq(x), for example,possesses the orthogonality
property
% { Sq (77 max) Sq (/ngx) d (qx) = 0, m#n; (3.4)

S is the first positive zero of Sq(x).
Also, the two functions Sq(x) and Cq(x) are quite distinct from the basic
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analogue of the trigonometrical functions which have been studied by previous
authors. See rb] and —51 , for instance.

4. A BASIC ANALOGUE OF THE SEPARATION THEOREM
Consider the g-difference equation
B{ KByl - Gy(gx) =0, (4.1

where the functions K and C are continuous on the close interval a= x=b. Bv
reasoning which is exactly parallel to that employed when discussing the
corresponding case for ordinary differential cquations, [51 , 1t follows that
(4.1) has only one continuous solution with a continuous basic derivative which

satisfies the initial conditions

y (€ =v. , (By) =,

where ¢ is any point in the closed interval a< x< b. Also, it can be shown
that no continuous solution of (4.1) can have an infinite number of zeros in
a< x< b without itself being identically zero. We now proceed to establish

the g-analogue of the separation thecorem of the zeros of independent solutions
of (4.1).

Let yland Yy be two real, linearly independent solutions of (4.1), such that
Y1 vanishes at least twice in the interval a< x<b. If Xy and x, are two
consecutive zeros of y1in that interval, then it is proposed that v, vanishes

at least once in the open interval (x1,x2). First of all, v,cannot vanish

at x; or at x,, since it would then not be independent of v Suppose that v,

1 2
does not vanish at any point of (x], X5 ) The fraction vq/ v, 1s continuous

and has a continuous ¢-derivative in [x],xz]. However, we note that

@ yZI;)’-]_Y1é\,V2
B lyy /y,) = '“};}éfﬁ}j—'**-—— s
and the numerator of this fraction is the basic analogue of the Wronskian
of Y1 and Yy which does not vanish at any point in(x1,X2). Hence, this

contradiction shows that y, must have at least one zero between X, and
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le There cannot be more than one such zero because if there were two,
then y1wou1d have a zero between x1and X, which would not then be
consecutives zeros of Y1 Thus the zeros of two real linearly independent
solutions of a basic linear difference equation of the second order
separate each other.

5. A BASIC ANALOGUE OF STURM'S FUNDAMENTAL OSCILLATION THEOREM

‘Let u and v, respectively, be solutions of

B{KBu) -G u(q)=0 (5.1)

0, | (5.2)

I

and ﬁg{f KBv) - G2 v (gx)

where Gy G2 in a< x<b, but G; is not the same as G,throughout the whole

1
interval. Multiply (5.1) by v (gx) and (5.2) by u (gx) and subtract, when

we have

B { K B ul v (gx) - ﬁ {Kﬁv} u (qxj=(G1—Gz)u (qx) v (gx). (5.3)

Consider

K (Vﬁu—uﬁv)= { KBu } v—{Kﬁv} u

Expand by means of Jackson's formula (1.3) and obtain

K (vﬁu—uﬁv) =y (qx)é\ {KBu } + {Ké\u } Bv

-u(gx) §~{K§V} - {Kﬁv} %u (5.4)

This is the same as the left-hand member of (5.3). Hence, if we q-integrate

(5.4) between the limits X, and X5 it follows that

X

P 2 X.

K (vBu-uBv) = IKZ (G1—GZJ u (gx) v (gx) d (gx). (5.5)
1

.
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By hypothesis, q is real and positive and such that 0< q< 1. Let x1and
xzbe two consecutive zeros of u and, in the first instance, let v have
no zero in (XT’XZ)' Without loss of generality, it may be supposed that
both u and v are positive in the interval (x1, xz). The right-hand member
of (5.4) 1is th?p definitely positive. On the left hand side, u is zero

at x, and Xys B u is positive at x1and negative at xzand v is positive
at both limits. The left-hand member of (5.5) is therefore negative and
this contradiction shows that v vanishes at least once in (x1,x2).

In particular, if u and v are both zero at X5 it is evident that v
vanishes before the consecutive zero of u appears. Hence, v oscillates
more rapidly than u. A convenient basic analogue of Picone's formula
does not appear to exist, so that a more general oscillation theorem has

not, so far, been obtained.

We now discuss conditions that the solutions of (4.1) may or may not be
oscillatory.

Suppose that, in a< x< b,

s
v
=
N\
~
Vv
>

and G >G >g

The first comparison equation is

B [k B y ! -g y(qx)=0, (5.0)

or Bzy 3 Q/t& y (gx) = 0. (5.7)

Solutions of (4.1) do not oscillate more rapidly than those of (5.7), which

latter is immediately g-integrable.

(i) If g=0, the comparison solution of (5.7)may be taken to be equal to unity,
so that, if g >0, the solutions of (5.7) are non-oscillatory for non-positive

values of x, that is if G >0 in a<x <b, then the solutions of (4.1) are non-
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oscillatory in that interval provided that no positive value of x is included.
This arises because the basic exponential function Eq(x) oscillates for positive
real values of x.

(i1) Suppose that g< 0, when we have the oscillatory solution Sq{ N YR x } of
(5.7). Let the positive zeros of S (x) be Cyy Oguneylyens Consecutive zeros
of solutions of (5.7) are o. .~J-k/q and «_ [-k/g, so that if a>a k/g and

T-1 - 2 I'\J~~ bt BN
b<\l—@/g, no solutions of (4.1) can have more than one zero in the interval ac
x<b.

Consider now the second comparison equation

Bi{KBy) -6y (@) =0, (5.8)

or ﬁzy—g/K y(gx) = 0. (5.9)

Then the solutions of (4.1) oscillate at least as rapidly as those of (5.9). If
G is negative, the solutions of (5.9) are oscillatory and consecutive zeros are
L \l~§/g and a. -K/éi Thus sufficient conditions that the solution of (4.1)
should have at least m zeros in the interval a<x<b are that

-K/G and b o E—K/G.

In particular, sufficient conditions that (4.1) should possess a solution which

oscillates in the interval a< x< b are that

a<a, -K/G and b>a,

6. THE DEVELOPMENT OF AN ARBITRARY FUNCTION IN TERMS OF A SERIES
OF q-ORTHOGONAL FUNCTIONS.

We may transform the g-difference equation

By +fBy+gy (qx) =0 (6.1
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by putting y = u (x) v (x), and obtain

U(q%k)BZV +{(1+ —%—J Bu(gx)+fu(qx)} Bove {B2u + f§u+gu () W (qx)=0 (6.2)
If u is so chosen that
(1+ _:1" ) Bu (gx) + fu (gqx) = 0, (6.3)

Then we obtain the normal form of the difference equation (6.1). This is the
basic analogue of the process of finding the normal form of the second order
linear ordinary differential equation. We may, therefore, without loss of
generality, confine our discussion to the normal form of the basic Sturm -
Liouville equation (2.1).

Consider the normalised eigenfunctions of the system

Bzu +{e2 - gx) } u(qx) =0,

Bu-hu=0 at x =0

% (6.4)
and Bu+Hu=0 at x =]

in relation to the formal expansion of the arbitrary function f (x) in the form

® 1
£ = T up (@) | £(0 up (@0 d (qt). (6.5)
| -1 Jo _

we recall that our investigation is applied to the real domain only, and that
0<q< 1.

we may write

1 (1 "
J £(1) ur (at) d (@v) = - | f©) - B2 u.(t) 4 (qt)
¢ P2 g
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1 1 A
ngtl Bu ()| + L B{ Zf(t) b o Bu (t) } d (qt)

£ By (1) + ity L v dat)

e -g (t) e -g (1)

o=

1
[ o (q 0 BZ{———f(—t)——} d (qt)
0 '8 (t)

HE(1) ur(1) hf(0) ur(O)

= +

1
Z 2 a
e.-g (1) e.-g (0)

{u (qt) B {—f—@)—}}1
e -g (1)

J: u. (qt) By g (qu).

e -g (t)

Q)=

(6.6)

This is a consequence of the basic analogue of integration by parts obtained
by inverting equation (1.3). If f and g are both continuous and possess

continuous first and second gq- derivatives, then

e2 B {——E—LEQ——} and e2 gZ {

et-g (1) 2-g (1)

are both bounded for sufficiently large values of e and for all t in the
interval 0 <t < 1.
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we see that the series (6.5)converges uniformly in this interval by the
M-test. '

Let the sum of the series(6.5) be denoted by ¥ (x) so that

i

- [1 G gy (1 B
J.o ¥ (x) un (gx) d (gx) 51 fo ur(gx)u n (qx) d (gx) Jour(qt')f(t)d(qﬂ
e

i

1
[[an@sma@, (6.7
because the functions {ur(qt)} constitute a g-orthornormal set. Hence

{: {¥ xX)-f(x)} un (qt) d (qt)=0 - (6.8)

for all n, and so ¥(x)=f(x), and it {ollows that the expansion (6.5) is
convergent in the interval 0 < x <1.

7.  CONCLUSION.

The discussion of the basic analogue of the second order Sturm-Liouville
system leads potentially to several new classes of functions which are
orthogonal with respect to basic integration. A basic analogue of certain
properties of the oscillation of solutions of the associated q-difference
equation is also given. Finally, it is shown that a wide class of functions

may be expanded in series of basic eigenfunctions.

Although the equation of g-orthogonality has been discussed f{from a
different point of view by other authors, see [4], for example, any relations
which may exist between the results implicit here and those obtained elsewhere
remain to be investigated. It would appear that the interesting posibility of
introducing a number of new analogues of the classical orthogonal functions

arises from the general result proved in the second section of this paper. A
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few of the properties of a basic Laguerre polynomial which satisfies a q-
difference equation of the type (2.1) have been investigated by the author
in [2] and [3] and it is hoped to develope this matter at greater lenght
subsequently. All the results given here reduce to the corresponding results
in ordinary analysis when q » 1.
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