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ABSTRACT

The paper provides a general theory for expected values of lin-
ear functions of products of sample power sums in terms of products
of population power sums - all given symbolically by partitions. This
approach is so general that the results can be applied to any sample
moment function under any sampling law from a finite or infinite,
univariate or multivariate,population. With simple modification, an
unbiased estimate of the population moment function in the above
situations can also be determined . The results provided are general
enough to cover most of the work done so far on moments of moments .
The results feature coefficients of individual terms , thereby
avoiding accumulated algebraic errors, frequent in earlier works.
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RESUMEN

Este trabajo presenta una teoria general para valores esperados
de funciones lineales de productos de 'sample power sums' en térmi-
nos de productos de "population power sums' , todas dadas simbdlica-
mente por particiones, Esta formulacién es tan general que los re-
sultados pueden ser aplicados a cualquier 'sample moment function"
bajo cualquier ley de muestreo , para poblaciones finitas o infini-
tas, univariadas o multivariadas . Con una simple modificacién tam-
bién se puede obtener , para las situaciones antes mencionadas , un
estimado no sesgado de la "population moment function'.

Los resultados presentados son lo suficientemente generales co-

mo para cubrir la mayoria de los trabajos realizados hasta el momen-
to sobre momentos de momentos.

Los resultados también presentan coeficientes de términos indi-
viduales, eliminando de esta manera la acumulacidén de errores alge -

braicos tan frecuentes en trabajos anteriores.
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1. INTRODUCTION

The purpose of this paper is to present a most inclusive theory
for the expected value of sample moment functions by identifying the
resulting formulae, essentially, by partitions. The theory is inclu-

sive enough to cover

a) different linear functions of the products of sample power sums-
thus treating k-statistics , sample central moments , and other
sample moment functions at the same time;

b) sampling from a finite universe as well as from an infinite sup-
ply - the moment laws for infinite sampling are identical with
those of finite sampling with replacements;

c) different replacement laws - much more general than those usually
considered;

d) multivariate as well as univariate populations - the basic treat-
ment uses a column for each unit variable , so univariate and
other multivariate results come from combining (coalescing) col-
umns ;

e) populations with different moment characterizations - the results
are in terms of power sums and so are applicable to all distri-
butions which are characterized by their moments (power sums);

f) the formula for an unbiased estimate of any linear function of
products of population power sums subject to (b), (c), (d), (e)-
included are population central moments , cumulants, products of
cumulants, etc.

There appears to be little in the literature which can match
this generality , though estimates of cumulants and of products of
cunulants have previously been used in place of (a) to avoid the
complexity of the conventional results . With the approach of this
paper, all the cases above are covered by one general result. Almost
any result obtained during the last century on the expectation of
sample moment functions , besides all the new ones , can be obtained
by specifying the values in (a) - (e) . Because the elements of the
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formula are identified by partitions , the coefficient of a particu-
lar moment product, in the result, can be obtained if desired.

The presentation here deals with expectation , and unbiased es-
timation, only but other moment functions of the sample moments can

be obtained therefrom by conventional formulae, and more easily with
the use of partitions.

A natural expressions of the central moments in terms of prod-
ucts of power sums features partitions, so it is not surprising that
formulae for moments of sample moments have been organized around
the resulting partitions . This was first demonstrated successfully

b Fidher {7 v, by chosing 1 S SWOGLiOn 10 9 A0 estimate

of a cumulant , was able to introduce so much simplicity in the re-
sult that , with a few additional facts such as the determination of
the algebraic coefficient of the partition, the sets of partitions

serve as the formulae (for sampling from an infinite univariate pop-
ulation).

Tnis 1064 of using the pertitions thenseles as the components

of the solutions was extended by Dwyer [3] to a general sample func-
tion . Results were obtained for expectations of moment functions
which are general linear combinations of products of power sums, and
from these, to determine formulae for moment functions of the sample
moment functions , again for sampling from an infinite univariate
population.

Since Fisher had such success in changing the problem from sam-
ple moments to k-statistics , Tukey [1 1] attacked the more general
finite problem (sampling without replacement) by using polykays as
the sample , function having the property that the expected value is
a product of cumulants . The theory was further developed by Wishart
[12] and Kendall [8] , and the results related to the partitions of
multipartite numbers . The polykays do have the nice property , by
definition , that they are unbiased estimates of products of cumu-
lants, but, for higher orders, they differ appreciably from the sim-
ple sample moment functions . Also this nice property is not readily
extendable to an algebra using them as it does not extend , without
extensive work, even to the product of two of them (5, p.41].
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There is another approach [1], [4] , giving results for finite
populations , which does not require that the problem be changed so
as to get simpler resultsidentified by partitions. This approach ,

partially generalized in [5], is given more extensive generalization

here for expectation , and new general results for unbiased estima-

tion are presented.

2. NOTATION, DEFINITIONS AND SOME PREVIOUS RESULTS

We summarize , briefly, the concepts , notation and basic facts

required . These are generally quite consistent with those of 1] -

(6], (9], [10].

a. Partitions., A most important concept for this paper 1is

that of a general partition. We consider multipartite number

u, = 11 )z 1 consisting of x« units . The partitions of w, are formed

by placing the units in different rows , with at least one unit in
each row (the remaining spacesare filled with zeros). Each partition
is unique, i.e., it can arise by partitioning u,
permutation of its rows does not alter the partition). The rows rep-

in only one way (a

resent the parts of the partition, and the colums represent differ-
ent variables. When certain variables are identical, the corre-
sponding columns are combined (coalesced) by adding the corre -
sponding elements in the rows . When all variables are the same, all
colums are coalesced , yielding colum vector % , whose elements
are the parts of unipartite 4. The number of partitions of the mul-

tipartite number u, which coalesce to x is called ¢(x), the com-

n
binatorial coefficient of #. If 2 contains m parts, with
h h
¥o M5 - - e = . T, = ,
Mg hph, >N, >Ny, 1 Z:,L'Lﬂ“’n %w/c and
A
o(a) = 2.1)
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since an interchange of equal rows does not change x.

For a multipartite partition R, the combinatorial coefficient
®(R) is the product of the combinatorial coefficients of the indi-
vidual colums , except that the nll P wh! termm is applied to the
repeated rows (parts) of R, rather than to the repeated entries of
the individual colums.

Thus

- ' L)

110

Also partitions themselves may be partioned. Thus 001

. 110 100
partitions and 010

001
b. Power sums and power product sums. Let X, be the o™ mem-
ber of a sample of size n or of a finite population of size N. Then
power sums for the univariate case are

N
x 9= la), §x§=rm~

[l e =~

and for the multivariate case

I TR [g1 g, - gn} for the sample, and

- 1S
<
—
>
]
=
w
~r
]

e e
~
%
=
N
<
(s
o
t

I (g1 g, +e- gn)N for the population.

In what follows , it is frequently required to use products of
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power sums for the parts of a partition. The notation used is to en-

p p 0}
close the partition in parentheses. Thus ' 01 02 , is a symbol for
'\

P,
the {pl P, 0)(0 0 pa).

Similarly 1} «x g X g is indicated by [g h] for the sample,
ofB

and by [g h] q for the population, and called a power product sum

[4, p.13] or augmented mononial symmetric function [2, p.2].
Relations expressing products of power sums in terms of power

product sums , and vice versa , are important in this direct general
sampling theory. The basic multiplication theorem for power sums
[4, p.15] is given by

Q) = Iy (W] (2.2)

where (W is any partition which results from adding parts of © ,both

being partitions of w, - This, in a sense, generalizes

(6] - farsd » [§]

or

We also need to determine [W] in terms of (R), where R is any
partition.resulting from coalescing parts of W. If W has 4 parts, R
has £ parts, and AI, S0 nns 44 are the numbers of rows (parts) of
W coalesced to form the successive rows of R, (6 = J4.} , then [4,

p.30]
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[ = Lol -4 G -1tls, -1 -1 R (223)

We need a formula for the expected value of W. A general formu-
la is [10, p.13]

ElW] = d,[W], (2.4)

where dw is a function of W. For sampling without replacement,

dw g, = n(M/N(M where 4 is the number of parts of W. For sam -
pling with replacement , dw = n[‘”/N's. For many sampling laws, dw
depends only on the number of parts of (/, and hence can be repre-
sented by dA '

c. Symmetric means. Also called angle bracket [11], it is de-

[a]

g
fined as <g> = 92 for the sample, and <G>y = N for the popu-
() ()
n N

lation. Letting EN denote expectation when sampling without replace-
ment from a finite population

EN<g> = <g>y (2.58)

Thus <g> provides an unbiased estimate of <g>), a property much used
for k - statistics [11] and h - statistics [3, p.26].
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3. MOMENT FUNCTIONS AS PARTITIONAL FUNCTIONS

Dwyer [3, p.23] defined a general moment function 610 in terms
of power sums of partitions of p. Here we first define a function

§, which is a linear combination of the partitional power sums of
n

U, Thus

where Q is any partition of w, and (Q) is the product of the power
sums of its rows. Thus

=
=
n

a (1)

o
=
n

a.. (11} # a 10
g = 3] (or)

=
=
L]
2
p—
—
—
—
+
=
—o
QI
—
—t
S
—————
+
o
S
o
=10
—
—
S
—

Values of a's remain unchanged on interchanging or coalescing col-
ums. However, non-unit combinatorial coefficients (Sec.2) begin to
show up on such coalescing.

In notation similar to (3.1), we have for populations,

F“n. = Ig Ag 2y (3.2)

where F and A indicate corresponding population functions in place
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of sample function.

4, EXPECTATION OF SAMPLE PARTITIONAL FUNCTIONS

Application of the multiplication theorem (2.2) for power sums
to the definition of {, = ZQ a, () in (3.1) gives at once
,L -~

b, = Lo % Ly W] -
H -~ <
For expectation, using (2.4) we have
E (6%J - EQ ) Ly 4y Wy -

Expanding Wy, in terms of power sums (R)N by (2.3), and collecting
the coefficients of (R)N .

Elfy ) = Ix Ig % Iy 4y SR PSS I IO PR TR I

= T Jo % Bgyp TRy

= Iz Dp Ry - (4.1)

where



-223-
. 4-1 ! !
CQlR'dew (-1 (51-7)....(At-1). , (4.2)

DR (4.3)

= Lo %9 Colr -

It is here seen that partitions R represent all the terms of

El4§ ), and that the coefficients D, are also represented by these
|ty R

partitions . These relations are illustrated in Table 1 where the
terms of E \ §, | are all presented explicitly for « = 3. The values
N,

of CQ|R (which become CTr , with column vector m , when dw = d)5 as ex-
plained below) are indicated in the interior of the table . The col-
ums are multiplied by the a, in the left margin and the sums formed
to obtain the Dp placed in the bottom row . These Dé s aremultiplied

by the (R)A'! s of the top row and added to obtain E[{ | .
| “3
When R is a one-part partition, e.g. 111 in Table 1, £ =1 and

4, =4, s0 (4.1) becomes

Corp = Lyl 1127  ls-1)0d

9|R (4.4)

A

which we call the generalized Carver function C)L . Special cases are

C =d , C =d -d , C =d -3d +2d_ .
2 i Tz 3 1 2 3



TABLE 1
j S OF AND D, IN E{f |
VALUES OF CQ‘R ! 2 Lgus)
R 111 110 101 011 100
001 010 100 010
001
0 la (117) 110 sm) ;'on] 100
& R N . At
T oNRIN ..001}N 00|, | |100], |{o10]
001/,
11 {a,, |E(1T) d - C
1110
110 |« E d-d =¢ d =¢
110 001) 2 2 2 1
00T | o1 \ 1
”01\1
101 101 E.OIO} dl—dg - Cz dz = C
010 | o010 |
011 | a EI"”) d-d =0 d =¢
100 | So0 lwo S & 3
100" i o o o A )
1?0 a,, E(Ow) d,-3d,+2d =C_ |d -d =C, |d -d=C |d -d-c |d -c,
001 | 333 loor : %
E(éu) 9111 Dllo Dlo1 Dou Dloo
3 001 010 100 8(1)?

When R is a two-part partition, with £, units in the first row

and r, in the second, applying (4.3) to the 4, rows of W which co-

alesce to the first row of R, and again to the 4, rows of W which

coalesce to the second row of R, we get
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4,-1 ' &=
QlR = Xw(’j) (‘61"1)- d‘él (‘1] s

L TN T HN S

where o indicates the addition of the subscripts of d's (i.e. the
number of parts) . This is denoted by C/,L in Table 1 for the 2-part

— 1
partitions R. Here, x,

(]
n
£
o
(]
—
"
.
—
o
-
n
[

(g ]
n
£
o
L]
n
A
|
(=
L]
o
o
-
u
a.
t
o

[
[

The argument is immediately extended for £ > 2, and with w de-

. ! "
noting the colum vector ()Ll, Ry eee ’Lz:) ;€ ¥ € : 0 ano OC’LI.

Thus, in Table 1, C =d od od =d
% 1 1 1: 3
1

For all sampling laws, where dw = dA’ depending only on the
number of parts of W, the C's for univariate or multivariate cases
are identical, being dependent only on the number of parts . By co-
alescing the columns in Table 1, we obtain Table 2 for E{da), which

displays non-unit combinatorial coefficients (2.1).
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TABLE 2
VALUES OF CQIR AND D, IN E(f,)
R 3 Z ]

y
3 a, El3) (’1
?
? a, E(I) Cs C,
| | 1
| 1
’ ; ai E(]) C3 3(3% Ci
I ) ‘
E(fs) 0, Dz Dl
b 1
1
Combl.coeff 1 3 1

If only the first two columns of R are coalesced in Table 1, we
obtain the case of E(ﬁu)’ as in Table 3.



TABLE 3

VALUES OF o AND Dy INELf, |

Q 21
R 71 20 11 10
01 10 10
01
R, | 121), 20\ T 10|
0 ol ol Lo
E(0) N N o),
I
21 E(21) c,
20 E(ZO) C c
01 01 2 %
T
11 E( ) c C
10 10 : :
f
10 EL;g) c, c, 2 ]
10 ..'.
o 01 1 1
E{ézl] Dzl 020 Dll DlO
01 1.0 J (]52
Combl.Coeff. 1 B 1 2 1




We also present Table 4 below for E(éu)'
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TABLE 4
VALUES OF E
ALUES OF Cy o AND D, INE(f, )
R 4 3 7 7 1
1 7 1 1
1 1
1
Rl (4) 3 7 7 1
0 |a
2 | Ele N ‘1) {z) 1 1
NVl
ty |1
1
N
4 |a E(4) C
n 1
3 |a E(f) C C
7 3 2 1
3 1
2 | a E(g) C C
2 2 2 }
2 | a |E ? c 20 C c
2 3 2 2
1 1 1 1 i
1 1 1 1
i i a lE ; ¢ | 4c 3C 6C C
AN « 171 178 |7 |
AR Lo
1 B 7 1
E(h.) o |0 o, | o D,
1 2 1 ; 3
1 1
)
Cmﬁl&m{i&l 4 \ 3 { 6 &1
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5. UNBIASED ESTIMATION

Since E[W] = d [W],, with dy > 0, it follows that the unbiased
estimate of [W]y is

e ful,, - ;—wm = dy .

Then, as in Section 3, with

-
1

u = lgAg 1y = Tg A Ty Wy

-~ Ig gy dy ™

=Irlg Ay de; (1187 (5,10 ees L8 (R)
< Iz Io g or ¥

= Ip O (R

where D; - ZQ AQ CalR and CEIR is CQIR with d;; replacing dW' When

* * . 2 ; 1 .
dw = dé, CQlR becomes C,L, which is C)L with 5 replacing dy. For sam-

() °

pling without replacement, d)5 ® 2 ”(é) so then C:L are Carver
N
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functions with n, N interchanged.

Again we see that the results for unbiased estimation are given
symbolically by the partitions of R and Q. Also, univariate and
other multivariate results are obtained by coalescing columns.

6. ALTERNATIVE FORMULAE USING SYMMETRIC MEANS

For some purposes it may be useful to express 6u in terms of

; o

symetric means [11] <> = '(%f (W], For example, the definitions of
]

k-statistics and h-statistics are naturally in terms of symmetric

means. This representation is fine a) if the §, can be represented
n

naturally as a linear function of symmetric means, or b) if one ig-
nores the difficulties in transforming products of power sums to
symmetric means, or vice versa. Though, for sampling without replace-
ment, E<W> = <w>N (2.5), it does not follow that E<w1><w2> is easy,
since <W ><W,> is not transformed easily to a linear function of
<W>'s. See [5, p.41].

However , for any 60. which is readily expressible as a linear
n
function of symmetric means, the formulation 6u = Zw bw <W> is very
R

useful since, at once, E(ﬁu ) = Zw bw <w>~ . Expressing this result
in terms of products of powe’%* sums,

E(ﬂun} = Zw;%,— [w]N

b
w A‘t ] ’
= ZR Zw W ("1) (6 —’)- “ . (At-ll‘ (RJN

which is again of the form ZR Dp Ry
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7. PRODUCTS OF PARTITIONAL FUNCTIONS

We have shown above how to obtain the expectation of a parti-

tional function. Our next concern is the expectation of products of

partitional functions , needed right away if we want to investigate

their moments, product moments, cumulants, etc. All that is required

here is a consideration of a partitional function whose weight
equals the weight of the product . Thus 510 = al(TO) , 501 z a1(01)

and the product 6106“ : ai (L?) , which is

10
01

. 2
, With a =0,a =a_ .
13 Z(L}g 1

611 - all“” " alO
01

: _ 10
Using Ey(6,,) =D, (17) + B (OT)N
01

n

10
(a11 C1 + a CZJ(TI)N £ 4, . C1 ( ) "
01 1 N

10
01

x 2 2 10
we obtain EN(éloﬁull = &y Cz “”N ! C{ (OI)N

In general, the product of two §'s can be written

6un16u/‘l2= ZQI an (QI) . zQz an (Qz) Sk

= ZQ a, (Q) (7:2)

where Q = ( , where the first n and the last , colums of

0
1
09,
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Q are reserved for Q1 ,22 respectively, and aQ = cLQ1 an . Thus

6

11 61 i all(”) i alO

i e
01

can be written as

7

100
61106001 B a11o(110) * Ry (010 a001(001)
010
) 110) 100
% (oor * Ryoe 070 (7.5)
001 019 1 001
001

where the dotted lines distinguish the subscripts of the a's. Then,
applying (4.2),

110 101 011
(6110 600J i (IIIJN * Dlxo ‘OOIJN * 0101 (OIO)N ’ 0011 (IOO)N
001 010 100
100
+ Dbgg (010) (7.4)
oo1 |\ 0017 N
with D = a C +a ¢ , 0D = C +a E.. 5
111 110 2 100 3 110 110 1 100 2
eve 010 001 v 1 010 1
001 - 001 %
001 doi
D =a c , 0 =a c , 0 =a i
101 100 2 011 100, 2 100 100 1
010 010 1 100 010" 1 010 010 1
001 001 001
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It may be noted that for each R, the coefficient can be determined
without reference to other R's, from the values of the Q's in (7.3)

which coalesce, by rows, to it.
Formula (7.4) can take special cases. Thus for moments,

” !

m_ =§ with a =1—,a =-l—,andm = §

110 110 110 n 100 2 001 001

010 n

a :.1_ .

001 n
One thus obtains

Em m' ) =L dn-Tle - (n3)e. - 20 N
( 110 001) T neile, = =310, - Lo N

and by coalescing. further

) 1
E(m”m“) ;;{(n—l)el - (n—3)c>_2 - 2().3}NM21

i

E(m —I—{(n—lle - (n-3)e - Ze}NM
3 1 2 3 12

"o
11 01 n

g

3

E(mzm;} = ;

{(n—l)e - (n-3)e - ZQ}NM
1 2 AR

with

The results can be extended to products of more than two §'s .
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8. CENTRAL POPULATION PARTITIONAL FUNCTIONS

For many purposes it is satisfactory to take the origin at the
population mean. In expectation problems there is no essential loss
in generality if the population mean is also known and for central
moments, even this is not necessary. Population power sums of devi -
ates are here denoted by ( ) N

This specification indicates that the expectation formulae

above for central partitional functions require only those val-

ues 0f (K]N. WILCh have 10 mit parts, so the corresponding s ned

not be computed. -This is specially useful for large #; even for

= 4, only 4 of the 15 R's, viz. 1111, éé??, ;?3?, ;??;, have non-

vanishing coefficients. Thus in forming E‘ﬁ } where § =
1000 1100 0011 00](1)100
a1100(1700) R 100 0100) o 60011 ) aoo11!0011) ¥ B (0001}’ e
0100 0001
need consider th i 1100 1010
e contributions only to (ITIIJN ; 00]} o101

1001

and
0110 \

by the Q's listed in Table 5. The last column in the

table is used to record the products of the a's.



VALUES OF DR IN Elﬁlloo $
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TABLE 5

0011

] WITH POPULATION MEAN 0

R) 1100 1010 1001
N. (1111) ‘ ) ] a
Q N. 0011 N, 0101 N, 0110 N 0
1100 C2 C1 alloox
e o0 0 l
0011 a0011
1100 a X
P C C 1100
0010 g : a
0001 8001
0011
o C C a X
1000 3 % 0011
0100 1000
0100
1000
0100 C C C C %1000 %0010
L 2 2 2 0100 0001
s 2 2 2
0010
00071
E(ﬁ ) 0 )
1100 0011 1111 1100 1010 1001
0011 0101 0110
Hence, the covariance
11 61100 ’60011) ) E(61100 60011} ) E(61100 & 6001J
. _ 1100
) 01111(1]71)N- ’ (01100 D1100 00011) (OOIIJN
0011l -
1010 1001
" 01010(0]01) ¥ 01001(0110] 8.1
0101 N. 0110 N.
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Special cases may be obtained from formula (8.1). Thus, for mo-

1
ments m ,m , we have a =a =I—,a =a = - —,
1100 0011 1100 0011 R %ggg 0010 2
C 2C &
C2 ZC3 Cu 1 2 2
yielding D 2 ———t— =L L1429 =0
1111 nz na nu 6“(1) nz ﬂa Vl“ 1100 0011
g
G5 :
T T g Piane ® Viogs T R
n n 0101 0110 n

. % ¢
Mo m )= | -2 L (1171)
11 1100 0011 2 3 t

2

-+ - —z) (IIOO}N(OOH)N

-+
S

C
(__%_) {(101a)~(0101)N + (IOOT]N(OHU)N} .

When all four variables are identical , this yields the variance of
the sample variance

as in [5, p.43] .
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With suitable modification , Table 5 can also be used for the
calculation of the unbiased estimate of F1100 Foo:1' The results can
be expressed in terms of sample deviates, so one can use four values

of (R), rather than 15 values of (R).
The results are such that the value of the coefficient DR of
any individual term can be computed without regard to other terms -

very useful in a field in which the algebra is so complex that occa-
sional errors have been found in the results of even the most accom-

plished workers.



-238-

REFERENCES

[1] CARVER, H.C., "Fundamentals of the theony of sampling", Amnals
of Mathematical Statistics, 1 (1930), 101-121, 260-274.

[2] DAVID, F.N., KENDALL, M.G. and BARTON, D.E., Symmetric Function
and Allied Tables, University Press, Cambridge, 1966.

(3] DWYER, P.S., "Moments of any rational integral isobaric sample
moment function", Annals of Mathematical Stdtistics , 8 (1937),
21-65.

1) R, D.S.. "onbined DPANSIONS of products of symetric

power sums and sums of symmetric power products with applica -
tion to sampling", Annals of Mathematical Statistics, 9 (1938),
1-47, 97-132,

(5] DWYER, P.S., "Moment functions of sample moment functions" ,
Symmetric Functions in Statistics , Ed. D.S. Tracy, Windsor ,
1972, 11-52.

[6] DWYER, P.S., MIKHAIL, N.N. and TRACY, D.S., "A concise proof of
a theorem on products of powen sums". To appear in Canadian
Journal of Statistics.

(7] FISHER, R.A., "Moments and product moments of sampling distri-
butions", Proceedings of the London Mathematical Society (2), 30
(1928), 199-238.

[8] KENDALL, M.G., "Moment-statistics in samples §rom a ginite pop-
wlation", Biometrika, 39 (1952), 14-16.

[9] O'TOOLE, A.L., "On symmetric functions and symmetric functions
of symmetrnic functions", Annals of Mathematical Statistics, 2
(1931), 101-149.

[10] TRACY, D.S. and DWYER, P.S., "Partitional functions of sample
partitional functions”, Technical Report N°17, Dept. of Statis-
tics, University of California, Riverside, California, 1973.


http:6une.t-i.oM
http:6u.nc...ti
http:6une.t-i.oM
http:�..6:t.JU
http:�u.nc...ti
http:6unc...ti

~239-

[ﬂ] TUKEY, J.W., "Some sampling simplified", Journal of the Ameri-
can Statistical Association, 45 (1950), 501-519.

[12] WISHART, J., "Moment coefficients of the k-statistics in sam-
ples grom a finite population", Biometrika, 39 (1952), 1-13.



