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Abstract 
 

This work is based on developing the parametric representation of the failure envelope to Mohr's circles in 

intact rock as a function of the principal stresses. In the proposed method, the stresses are adjusted using the 

statistical method EIV (error-in-variables), which does not make artificial distinctions between the independent and 

dependent variables. To accomplish the transformation from the principal stress plane to the Mohr plane, Balmer's 

method was used by applying computational algebraic analysis. To illustrate and verify the application of this 

proposed methodology, the well-documented dataset collected from previous work by Pincus and Sheorey is used. 

To test the improvement provided by this method, the calculated objective function (likelihood of erroneous 

decision) have been compared with the parametric equation representation obtained using various least squares 

methods. It was found that our proposed methodology, and the transformation method of Balmer, has two 

advantages: i) It simplifies the process of creating a failure envelope for practical applications, and ii) It minimizes 

the likelihood of erroneous judgment during applications (i.e. indicating failure in a stable state or vice versa.  

 

Keywords: EIV; failure envelope; objective function; principal stress plane; transformation. 

. 

Determinación de la Envolvente de Falla por Corte mediante 

el Ajuste con el Método Estadístico de Error en Variables a 

través de la Relación entre las Tensiones Principales 
 

Resumen 
 

El presente trabajo se fundamentó en el desarrollo de la representación paramétrica de la envolvente de falla 

a los círculos de Mohr en roca intacta, en función de las tensiones principales. En el método propuesto, las tensiones 

se ajustan utilizando el método estadístico EIV (error en las variables), el cual no hace distinciones artificiales entre 

las variables independientes y dependientes. Para complementar la  transformación desde el plano de esfuerzos 

principales al plano de Mohr, se utilizó el método de Balmer mediante la aplicación del análisis algebraico 

computacional. Para ilustrar y verificar la  aplicación de la metodología propuesta, se usó el bien documentado 

conjunto de datos coleccionados de trabajos previos de Pincus y Sheorey. Para probar las mejoras provistas por este 

método, se comparó la función objetivo calculada (minimizar la probabilidad de una decisión errónea) con la 

representación de la ecuación paramétrica obtenida, usando varios métodos de mínimos cuadrados. Se encontró que 
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la  metodología propuesta y la transformación del método de Balmer, tienen dos ventajas: i) simplifica el proceso de 

crear una envolvente de falla para aplicaciones prácticas, y ii) minimiza la posibilidad de un juicio erróneo durante 

las aplicaciones (como es indicar falla en un estado estable o viceversa).  

 

Palabras clave: EIV; envolvente de falla; función objetivo; plano de esfuerzos principales; transformación.  

 

Determinação do Envelope de Falha por Cisalhamento 

através do Ajuste com o Método Estatístico de Erro nas 

Variáveis pela Relação entre Tensões Principais 
 

Resumo 
 

Este estudo concentrou-se no desenvolvimento da representação paramétrica do envelope de falha em 

círculos de Mohr em rocha íntegra com base nas tensões principais. O método  proposto ajusta as tensões usando o 

método estatístico de Erro nas Variáveis (EIV), que não  estabelece distinções artificiais entre variáveis 

independentes e dependentes. Para  complementar a transformação do plano de tensões principais para o plano de 

Mohr, foi aplicado o método de Balmer por meio de análise algébrica computacional. Para ilustrar e  verificar a 

aplicação da metodologia proposta, foi utilizado o conjunto de dados extensivamente documentado coletado de 

trabalhos anteriores de Pincus e Sheorey. Para  testar as melhorias fornecidas por este método, a função objetivo 

calculada (minimizando a  probabilidade de uma decisão incorreta) foi comparada com a representação da equação  

paramétrica obtida, utilizando vários métodos de mínimos quadrados. Verificou-se que a  metodologia proposta e a 

transformação pelo método de Balmer oferecem duas vantagens:  i) simplificam o processo de criação de um 

envelope de falha para aplicações práticas e ii) minimizam a possibilidade de julgamento incorreto durante as 

aplicações (como indicar falha em um estado estável ou vice-versa). 

 

Palavras-chave: EIV; envelope de falha; função objetivo; plano de tensões principais; transformação. 

 

Introduction 
 

The parametric representation of the rock-strength failure envelope is used to characterize the mechanical 

behavior of a rock (Coulomb, 1776). When dealing with laboratory data, the physical limitation of the experimental 

setup mostly forces us to represent the failure criteria in the stress-state plane, neglecting the intermediate principal-

stress influence (Hoek and Brown, 1980). Because a failure envelope represents the boundary between stable and 

unstable zones of the stress state, a  closed-form representation of this envelope becomes of great importance in 

practical applications (Balmer, 1952). The delimitation of this boundary could be the key for modeling various near-

wellbore region phenomena like subsidence, borehole stability and sanding propensity (Zambrano -Mendoza et al., 

2003). For instance, if the effect of the principal intermediate stress is considered having not to influence the rock  

strength (which is not always true) a failure criterion can be expressed in terms of the major ( 1 ) and  minor ( 3 ) 

principal stresses, so that the criterion can be represented as (Coulomb, 1776; Balmer, 1952):  

 

( ) 0, 31 =g            (1) 

 

Zambrano Mendoza et al. (2003), stated that because of the experimental errors and stochastic variations in 

the rock itself, there is no guarantee of creating a deterministic curve to represent the failure envelope. Rather, the 

problem consists of selecting a suitable algebraic form of Equation 1 and determining their unknown parameters 
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from a suitable criterion related to minimizing possible false judgment of failure in future applications. The algebraic 

equations which have a relationship within the failure principal stress are Mohr-Coulomb for linear and parabolic 

form and Hoek & Brown to the quadratic case. In order to compare we also introduced the Ucar’s method (Ucar, 

2019).  

 

Several empirical failure criteria have arisen over the past five decades in the attempt to simulate the triaxial 

behavior of in-situ (intact) rock specimens. The majority of those equations were proposed for a few particular rock 

types having in each case a limited number of data (Hobbs, 1964).   Hoek and Brown (1980), developed a new failure 

equation and fitted it comprehensively to different rock types. Similarly to most empirical failure criteria, it was 

formulated in terms of major (
1 ), minor ( 3 ) and independent of the intermediate principal stress (

2 ). Some of 

the empirical failure envelope equations were assumed only in the compression and did not necessarily exist in the 

tensile quadrant. This implies a limitation because a failure criterion should exist both in the tensile and compressive 

region to be comprehensive enough (Mostyn and Douglas, 2002). Sheorey (1997) provides a list of the most relevant 

empirical failure equations.  

 

The least-squares method has been widely adopted to fit the failure envelope directly from the experimental 

data. Mostyn and Douglas (2002) presented different results fitting the different forms of the Hoek and Brown 

(1980) criterion. Recently, some variants of the least square method have been defined, such as the orthogonal 

regression method, and comparisons have been established with the traditional method to calculate the sum of the 

square of perpendicular distances (Keles and Altun, 2016; Recio -Lopez, 2021). This represents a significant 

improvement, but the concept of dependent and independent variables is still used. The non -linear character for the 

envelope in the Mohr-Coulomb failure criterion does not have a closed-form solution, which is why methods such as 

the Simplex Reflection Technique, which have also been used for curve fitting to evaluate the parameters of the 

envelope considering also the failure criterion for intact rocks of Hoek and Brown (Shah, 1992). The Simplex 

Regression Technique method consists of the minimization of a function of n parameters developed by Nelder and 

Mead (Nelder and Mead, 1965). A weakness of it is that it requires a large number of evaluation functions to locate a 

solution. 

 

However, Zambrano Mendoza et al. (2003) emphasize that the statistical method of least-squares and some 

others derived from its, requires the distinction between independent and dependent variables, requiring that the 

former be known exactly. In that work, we proposed a new and efficient approach based on the statistical method 

(EIV) to fit the failure envelope in the Mohr plane. Also the EIV method to fit the failure envelope based on large 

experimental data have been further referred by some others researchers like (Jiefei and Puhui, 2018; Jiefei et al., 

2020). The quadratic form is frequently chosen as the non-linear failure function for isotropic materials due to its 

relatively good curve-fitting (Jiefei et al., 2019). 

 

Our earlier review of the use of the statistical method EIV found that Deming (1943) was the first to 

formulate the general EIV problem. See also (van Huffel and Lemmerling, 2013). His primary concern was how to 
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obtain approximate solutions, appropriate for hand calculations. Other researchers (York, 1966; Willianson, 1968; 

O’Neil et al., 1969; Southwell, 1969), proposed exact solutions, extending the solutions to straight lines or higher-

order polynomials. Britt and Luecke (1973), later suggest a general algorithm based on the concept of Lagrange 

multipliers. Whereas Peneloux et al. (1976), and Reilly and Patino-Leal (1981) provided computational 

improvements, Schwetlick and Tiller (1985), and Valkó and Vajda (1987) separated the parameter estimation and 

data reconciliation steps. Liebman and Edgar (1988) and Liebman et al. (1990), investigated the use of nonlinear 

parameter-estimation (NLP, not only in parameter estimation, but also in the data -reconciliation step. To avoid being 

trapped in a local minimum, Esposito and Floudas (1998) applied global optimization. Anand and Kumar (2015), 

present Multi-objective Optimization Techniques (MOT). Finally, Kumar and Kumar (2011), developed a parametric 

optimization of rock failure criterion using error-in-variables approach. We described the EIV method of curve 

fitting and developed a variant suitable for fitting failure envelopes in the Mohr plane according to Balmer (1952), 

and finally apply it to a well-documented set of data. In addition to obtaining the parametric representation of the 

failure envelope in the principal stress plane, a Mohr circle can be generated on the normal stress (σ), shear stress (τ) 

plane for every pair of stress state (1, 3 ) producing a failure during the triaxial failure experiments according to 

(Coulomb, 1776): 

 

2
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Equation 2 represents family circles of variable radius through the minor principal stress. From this a series 

of failure circles (known as involutes). Sheorey (1997) stated that there are three way to obtain a Mohr envelope: i) 

analytical derivation using the original criterion the parametric function  ( )31  f= , is not always possible, ii) curve 

fitting on the envelope resulting from the original equation ( )31  f= , or iii) direct regression of  the  ,  values 

obtained from ( )31  f=  using Balmer’s equations, which are given by (Balmer, 1952):  

1
3

1

31
3

+

−
+=








d

d
      (3) 

And  

3

1

3

1

31

1











d

d

d

d
+

−
=  (4) 

Where: 
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( )

3

3

3

1









d

dg

d

d
=  (5) 

Also defining the major principal stress derivative ( )1d , minor principal stress derivative 
( )3d

, the 

derivative of parametric function of g 
( )( )3dg

 and the slope ( 3

1



d

d

). Using Balmer’s solution of the Mohr’s 

envelope, the failure envelope can be obtained in the Mohr plane via transformation from the principal-stress plane. 

Then the equation of the failure envelope in the Mohr plane can be represented by the parametric function (Coulomb, 

1776): 

( ) 0, =f  (6) 

In this work, we propose to use the statistical method (EIV) to obtain the parametric representation of the 

failure envelope in the principal stress plane and to map out the resulting parametric representation into the Mohr 

plane. The earlier statistical method of error-in-variables has been previously defined elsewhere from York (1966) to 

Esposito and Floudas (1998) we presented its application in fitting the failure envelope in the Mohr plane (Zambrano 

Mendoza et al., 2003). In the following; we describe first the application of the EIV method of curve -fitting in the 

principal stress plane to a well-documented set of data, then the transformation of the resulting envelope into the 

Mohr plane. 

 

Materials and Methods 

Application of EIV method used to fit the failure envelope in the principal stress plane 

In the principal stress plane, the model can be written in its implicit form as:  

 ( ) 0,ˆ,ˆ
13 =g    (7) 

Where: 

3̂ = reconciled minor principal stress. 

1̂
 
= reconciled major principal stress. 

 = vector of unknown parameters in the principal-stress plane. 

 

Our goal is to find the optimum parameters at which the sum of necessary corrections squared, is minimum. 


=

=
n

i

pi
dJ

1

2   (8) 

Where: 

J = sum of square distance. 
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pid
 = 

geometric distance in EIV method. 

Where for each pair of measurements, the squared distance is given by:  

( ) ( )2

11

2

33

2 ˆˆ
iiiipi

d  −+−=  (9) 

Where: 

i1
 = 

i-th measured major principal stress.        

i3
 = 

i-th measured minor principal stress. 

i1̂
 = 

i-th reconciled major principal stress. 

i3̂
 = 

i-th reconciled minor principal stress. 

Thus minimizing Equation 8 subject to constraint Equation 7 constitutes the EIV formulation.  The simple 

form of the objective function Equation 8 allows us to use the following algorithm.  

EIV algorithm 

In Figure 1 the measured points have been reconciled by using the EIV approach. From its, the tangent 

vector of the envelope at ( )13 ˆ,ˆ   a is denoted by:  

           
( ) ( )

jia
1

13

3

13

ˆ

,ˆˆ

ˆ

,ˆˆ












+


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−= iiii gg

                                                      (10) 

While b is the vector from the measured i-th point to the envelope: 

( ) ( )jib iiii 1133
ˆˆ  −+−=  (11) 

In the EIV method vectors a and b must be orthogonal each other, so that a•b = 0: 

( )
( )

( )
( )

0
ˆ

,ˆˆ
ˆ

ˆ

,ˆˆ
ˆ

1

13

11

3

13

33 =



−+




−−









 ii

iii

ii

ii

gg
 (12) 

Solving simultaneously the system of Equations 7 and 12 we obtain the reconciled pair of minor and major 

principal stresses ( )13
ˆ,ˆ   at any parameter vector   , evaluating the objective function. Linear and parabolic 

functions can be considered to represent the failure envelope at the principal stress plane. Other algebraic forms may 

not be needed to fit the failure envelope in the principal stress plane. In this work only parabolic model is show. 
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Figure 1. Graphic representation of the error-in-variables (EIV) algorithm in the principal stress 
plane.  

Application to selected model 

Parabolic envelope equation 

For the parabolic approximation of the envelope in terms of the reconciled minor and major principal 

stresses ( )13
ˆ,ˆ   at any parameter vector   , Equation 7 can be written as: 

( ) 0ˆˆ,ˆ,ˆ 2

131013 =−+=
iiiig   (13) 

Where, 0   and 
1   are the unknowns parameters. The appropriate form of Equation 12 is:  

( ) ( ) 0ˆˆ2-ˆ
331111 =−−

iiiii   (14)                

Solving the system of Equations 13 and 14, to obtain the squared distance by Equation 9 to  arrive at an 

unconstrained solution involving two unknown parameters, 0   and 
1  ,  when substituting Equation 9 into the 

objective function (Equation 7) It is important to emphasis that those parameters further up are related to the uniaxial 

compressive strength ( c ) and tensile strength ( t ). Due to the cumbersome nature of i-th reconciled minor 

principal stress ( i3̂ ) roots, the squared distance (
2

pid ) is not shown for the parabolic envelope. Once we derived 

the parametric representation of the failure envelope using the EIV method through one of the algebraic forms 

already described above, we can generalize Balmer’s solution of the Mohr’ envelope to map out the resulting 

envelope into the Mohr plane. 

Determination of the envelope of a family of plane curves applying the Balmer´s method and considering that 

the failure criterion is represented by a parabolic function 

Using the resulting EIV parametric representation of the failure envelope in the principal stress plane 

(Equation 7) we can transform the algebraic solution to a parametric representation in the Mohr plane. To 

accomplish this task, we use Balmer’s method, based on the principal stress components. Introducing the reconciled 
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value of ( )13
ˆ,ˆ   obtained from the EIV method in the principal stress plane, Equations 3, 4 and 5 can be expressed 

as: 
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Also defining reconciled normal stress ( ̂ ) and reconciled shear stress ( ̂ ). Solving simultaneously 

Equations 7, 15 and 16, considering (Equation 17) a parametric solution in ( ) ,  stress plane is obtained for the 

failure envelope in terms of reconciled normal stress ( )̂ reconciled shear stress ( )̂  vector of unknown parameters 

in the principal-stress plane ( ) : 

: 

( ) 0,ˆ,ˆ =f
 (18)  

Which, represent the failure envelope for the Mohr circles, such as envelope is tangent to all the involutes. It 

is important to notice that a closed-form solution may or may not be achieved analytically. In this work we consider 

cases, when a closed form solution can be found using Computer Algebra software. To illustrate the transformation 

of the failure envelope from the principal stress plane to the Mohr plane, we present how the parametric 

representation of the parabolic model obtained in the principal stress plane is mapped out in the Mohr plane.  

Transformation of selected model 

Let us assume that we have obtained the EIV parametric representation of the failure envelope in the 

principal stress plane. That is, we have determined the optimum parameters of the parabolic model, Equation 13. To 

transform into the Mohr plane, we derive Equations 13 to 17 in terms of the reconciled minor ( )3̂  and major ( )1̂  

principal stresses at any parameter vector ( )   as: 
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In this case, Equations 19 and 20 can be expressed as:  
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Obtaining the reconciled normal stress ( )i̂  and reconciled shear stress ( )i̂  of i-th Mohr circle. Solving 

Equations 13, 20 and 21 simultaneously, the resulting parametric solution in the ( ) ,  stress plane is expressed of 

reconciled normal stress ( )̂ reconciled shear stress ( )̂  vector of unknown parameters in the principal-stress plane

( )  as: 

( ) ( ) 2
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Since the slope 3

1

ˆ

ˆ





d

d

 given by Equation 19 must exist, the square root term must be greater than or equal to 

zero. In addition, because the slope depends on the minor principal stress ( 3 ) it should increase when the values of 

such variable increase; thus, the slope must be positive. This implies that such generate envelope can describe the 

failure criteria for the brittle region of the tested rock. Where we assumed, that the quantity under the square root is 

always positive, that is automatically satisfied, for example, in the brittle region. 

 

Results and Discussion 

To illustrate and verify the applicability of the EIV method to fit the failure envelope in the principal stress 

plane, the results of a previous ASTM (American Society for Testing and Materials) interlaboratory study (Pincus, 

1993; 1994; 1996), were processed assuming linear and parabolic envelope models. In this ASTM interlaboratory 

testing study, the triaxial compressive strength of intact, uniformly oriented cylindrical specimens of Berea 

sandstone, were obtained. The goal was to obtain the failure envelopes for this rock in the principal stress plane, 

using all the available information provided by the various laboratories and then compare the failure envelopes to the 

ones obtained using least squares. For Berea sandstone, 107 and 147 (including tensile strength) pairs of axial and 

lateral stresses measurement (Pincus, 1993; 1994; 1996), were available. The optimal parameters for the parabolic 
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model are 0
'= 3291.76 MPa 2 and 1

'
=

 1133.43 MPa, 0
'= 3751.69 MPa 2 and 1

'=1116.84 MPa for 107 and 147 

pairs of Berea sandstone respectively.  

 

The parameters describe the failure envelope located nearest to the 107 and 147 pairs of axial and lateral 

stress measurements obtained from data measured in various laboratories under various confining pressures. The 

standard deviation is the sum of the squared distances between the failure envelope and each pair of measurements 

(objective function values); the standard deviations for the parabolic model are 3.76 and 3.23 % using EIV while we 

get 12.93 and 12.68 % from LS (Least Squared) for 107 and 147 pairs of Berea sandstone respectively. For 

comparison, we calculated the standard deviation using least squares. The EIV model provides smaller “sum of 

squared distances” for the rock and all models. In addition, we compared  our proposed method with the well-

establishes method of Hoek and Brown (1980a; 1980b), and Balmer (1952), using a set of sandstone data present by 

Sheorey (1997) for comparison. Balmer (1952), original equation has been expressed in dimensionless form by 

Sheorey (1997) as follow:  

         












+



=

t

b

c





ˆ
3ˆ1ˆˆ1                                                                                                      (23) 

And Hoek and Brown equation also could be rewrite as:  

          












++= s

c
mc






ˆ
3ˆ 2

1

31 ˆˆˆ
                                                                          (24) 

Also defining reconciled uniaxial compressive strength ( )c̂ , reconciled uniaxial tensile strength ( )t̂ , 

Balmers’s
 
 method constant (b’), Hoek & Brown’s method  constant (m), Hoek & Brown’s method constant (s= 1 

intact rock) (s). The selected data contained at least 5 pairs of measurements and reported at least a  tensile strength 

measurement. Table 1 shows the results. We note that even if the number of parameter (2) for the parabolic model 

using the EIV method is lower than the ones used by the Hoek & Brown and Balmer methods, and that the Balmer 

method look to have the best fitting, the resulting standard deviation when using EIV is too close enough than the 

one obtained by either one of those methods. Even better in most cases than Hoek and Brown equation. Highlighting 

in bolds letter the best standard deviation for each sample set in Table 1. The standard deviation, S.Dev, is defined 

by:  

2
.

−
=

n

J
DevS  (25) 



Determination of the Shear Failure Envelope                                                                         11 

 

Rev. Téc. Ing. Univ. Zulia, 2023, Vol. 46, e234613. 

For a failure criterion ( )31  g= , ( )ii 13 ,  being the i-th data pair and n the number of data pairs 

(Sheorey, 1997), and J the sum of square distance Equation 8. As an example for the parabolic model the uniaxial 

compressive strength ( )c and tensile strength ( )t  can be obtain by the relation: 

 013 0  ===


c                                                                                   (26) 

And  

1

0
31 0









−===



t                                                                                     (27) 

Using sample number 32 from Sheorey (1997) and considering that the determined parameters for the 

parabolic model are 0'= 15285.8 MPa 2 and 1'= 1494.91 MPa then 123.6358=


c  MPa and -10.2252=


t  

MPa, which are closer to the measured data 125.4=


c  MPa and -10.9=


t  MPa. Table 1 shown those value 

for each one of the samples sets considered. Also using the above mentioned methods the reconciled major principal 

stress  












 

1
 have been calculated for comparison and show in Table 2. Values calculated from the three methods look 

to be close to the measured data. However, if we calculated for comparison the Hoek & Brown's parameter (m), by 

the given relationship m= |σc/σt| we obtained for the sample set No 32 the value of m= |123.6358/(-

10.2252)|=12.0912.  

If this value is compare with the Hoek & Brown value that is m= 7.017, we can say that our results is more 

realistic for sandstone rocks (m is approximately equal to 15) than the Hoek & Brown one. Further, we considered 

Ucar's (Ucar, 2019) equation for comparison. In that work the following equation was derived. Rewritten that 

equation in reconciled variables we get:  

 

                  








−








− +=
























cc

kk
c ˆ

ˆ

ˆ

ˆ 33

ˆ

ˆ
2

1

21

1                                                       (28) 

In this equation 







=

c

t






ˆ

ˆ
and k1 and k2 are:  

                 
( ) ( )( )





2

1711

1

−+++−
=k                                                                (29) 

                
( ) 




−

−−
= k

k
1

2

1
                                                                                         (30) 
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Where:  , k1 and k2 are defining as Ucar' method constants. As an example we
 
substituted values of sample 

No 32 (Sheorey, 1997), k1= 0.719, k2= 3.180 and =  -0.087, while using our values we get k1= 0.730, k2= 3.27 and 

=  -0.083, which are close enough. More recently, Ucar developed a new failure criterion for rock mass and 

concrete where consider: the relationship σt/σc  (Ucar, 2021) .  

On the other hand, to verify the accuracy of the transform of the resulting parametric representation of the 

failure envelope in the principal stress plane to the Mohr plane, we used the obtained values of 0   and 
1  , which 

are the parameters of the parabolic envelope given for Berea sandstone (Pincus, 1993; 1994; 1996), in the 

compressive region. For this case, if we use the parabolic model to represent the failure envelope in the Mohr plane 

(Zambrano Mendoza et al., 2003), obtained a lower standard deviation, but the resulting envelope could cross out the 

plane close to the origin of coordinates, distorting lightly the estimation of the reconciled uniaxial compressive 

strength 












 

c and tensile strength 












 

t .  From the transformation, the resulting equation that represents the failure 

envelope in the Mohr plane can further minimize the sum of squared distance obtained when fitting the envelope 

directly in the Mohr plane using the EIV method with the parabolic model. Comparing both cases, we notice that the 

standard deviation given by equation 25, reduced from 3.05 % when fitting the failure envelope directly in the Mohr 

plane using the parabolic model to 2.91 % when using the transformation procedure. Figure 2 shows the failure 

envelope fit obtained from transformation of the parabolic model in the principal stress plane to a derived equation in 

the Mohr plane.  

 

Table 1. Comparative analysis between measured data with error-in-variables (EIV), Balmer and Hoek & Brown 

methods (Sheorey, 1997). 
Set P* Measured EIV Balmer Hoek & Brown          

 c  t  c  t S. 
Dev. 

 c  t b S.  
Dev. 

 c  t m S. 
Dev. 

32 12  125.40  -10.90 123.60 -10.22 14.18 125.90    -8.85 0.452 13.90 129.90 -18.15   7.017 14.85 
 33   9  115.40 -11.66 113.40   -9.59   7.64 113.30    -10.53 0.523   6.95 112.90 -14.68   7.561   4.94 
 49   5  104.00   -6.01 108.50   -5.44   5.16 104.30    -4.85 0.494   4.61 109.00   -8.11 13.37   9.44 

 57   5    28.10   -0.72   12.90   -0.21   9.80   21.70    -0.71 0.521 31.03   21.70   -0.88 24.537   3.89 
 58   6  127.50   -8.04 138.70   -8.25 20.34 127.10    -4.83 0.444 18.44 152.40 -16.54   9.110 29.01 
 68   5    42.00   -3.00   42.40   -2.56 4.30   41.20    -2.96 0.577   4.10   41.50   -2.92 14.123   4.11 
134   7  115.20   -9.52   93.50   -3.40 18.24 106.00    -7.19 0.591   9.98 110.70   -7.26 15.174   9.20 

135   9    80.80   -7.00   90.70   -4.56 12.66   85.00    -4.07 0.504 12.21   98.80   -8.09 12.125 14.62 
136   9    83.90   -7.60   84.50   -4.34 23.99   91.60    -4.39 0.462 23.45 103.60 -10.63   9.643 24.81 
137 11    91.08 -10.50 101.20   -7.92   9.97   91.10    -5.71 0.483   9.04 104.20 -13.39   7.652 11.49 
162 12    41.40   -2.64   27.40   -0.78   4.07   37.80    -2.09 0.550   2.29   44.20   -3.39 12.972   1.65 

163   8    57.20   -2.67   54.20   -2.84   4.61   54.20    -2.62 0.486   4.62   61.00   -5.75   10.51   6.62 
164   6    44.30   -2.89   44.50   -1.66   3.31   44.30    -2.28 0.556   1.02   48.20   -2.87 16.759   2.25 
165   7    95.50   -6.31   98.50   -5.16   4.97   94.00    -4.74 0.505   4.09   99.50   -7.39 13.379   6.29 
166   7  179.10 -11.06 165.80 -13.20   7.46 174.90    -10.00 0.377   5.04 162.10 -16.47   9.741 10.53 

167   6    97.00   -5.39 100.30   -4.15   5.40   96.30    -4.02 0.510   4.59 102.10   -5.82 17.498   5.60 
168   6    92.00   -6.67 108.10   -4.42 11.05   91.50    -2.99 0.496   4.25 110.30   -6.33 17.382 12.68 
177   7    24.30   -3.29   30.10   -2.87   2.85   27.10    -1.80 0.458   1.86   28.90   -3.93   7.261   3.16 

183 12    63.20   -3.03   47.50   -0.91 12.39   64.80    -3.01 0.603   3.03   54.80   -1.56 35.107   4.39 
191   6    67.70   -4.79   67.10   -4.52   2.03   66.20    -4.72 0.527   1.82   64.80   -5.02 12.824   1.96 

Set: set number,  P*: number of points, c (MPa): compressive strength, t (MPa): tensile strength, S. Dev.: standard 

deviation, b’: Balmers’s
 
method constant, m: Hoek & Brown’s method constant.  
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Table 2. Comparative values of the principal stresses of sample set No 32 using error-in-variables (EIV), Balmer and 

Hoek & Brown methods (Sheorey, 1997).            

Measured                                          EIV                             Balmer                   Hoek & Brown         

3̂   MPa   1̂  MPa    1̂  MPa  1̂  MPa       1̂  MPa 

-10.900 0.000 0.000 0.000 0.000 

0.000 125.400 123.636 125.900 129.000 

6.300 164.400 157.174 160.529 156.688 

12.100 193.000 182.686 185.859 179.143 

18.100 204.500 205.776 208.267 200.781 

24.200 229.100 226.854 228.388 221.513 

30.200 214.200 245.829 246.275 240.917 

37.200 283.000 266.264 265.330 262.549 

41.400 292.900 277.804 276.007 275.089 

47.900 282.800 294.774 291.608 293.939 

53.900 315.300 309.615 305.161 310.813 

60.800 313.300 325.847 319.895 329.675 

3̂ (MPa): reconciled minor principal stress, and 1̂ (MPa): reconciled major principal stress. Also ̂ t : reconciled 

uniaxial tensil strength are -10.22, -8.85 and -18.15 MPa for EIV, Balmer and Hoek & Brown method respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Failure envelope fitting through  tansformation  from the principal stress plane (parabolic  model) to the 

Mohr plane (, ) using error-in-variables (EIV) method. 

 

Conclusions 

The EIV method can provide a sound improvement for the parametric representation of the failure envelope 

in the principal stress plane. Compared with the methods of Balmer and Hoek and Brown, we obtained a very good 

curves fitting when considered the parametric equations of the parabolic type with the standard error values when 

comparing the methods. The resulting EIV nonlinear envelope equation can be easily transformed into the Mohr 

plane, providing a more appropriate approximation than those obtained when fitting the failure envelope directly in 

the Mohr plane using the parabolic model. 
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