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In recent times (z,1) - designs and related configurations have

been discussed by many authors in many contexts. Because these con-

figurations have both mathematical and practical interest, it is the

purpose of the present paper to bring together several of these Te~
sults . Related conﬁgumtms include the A- systems of E and
Rado, and balanced equidistant codes and equidzstant pemm:atim ar-
rays.
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RESUMEN

Recientemente han sido discutidos por varios autores en dife-
rentes contextos, disefios (1,A) y configuraciones relacionadas. Como
estas configuraciones tienen interés matemdtico y también préctico,
el objeto de este trabajo es unificar algunos de estos resultados.
Configuraciones relacionadas incluyen el sistema - A de Erdos y Ra-
do, c6digos equidistantes balanceados y arreglos permutacionales e-
quidistantes.
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1. INTRODUCTION

The designs discussed in this paper arise naturally in many ar-
eas of combinatorial theory , especially coding theory and com-
binatorial design theory. In the case A=1, they are a subclass of
the class of pairwise balanced designs , the latter being a central
tool of design theory. Although a thorough discussion of this sub-
ject is beyond the scope of the present survey , the reader is re-
ferred to the works of Wilson [41], [4Z], for fundamental results in
this area. Although there are many other papérs on this topic, ref-
erences to these are omitted since our main concern is with (x,A) -
systems. These systems have also arisen in the theory of balanced
equidistant codes, see [1] , [29], etc. Some of the results cited in
this survey are basic to the establishment of good bounds for the
dictionary size of such codes. Further, the use of (1,)) - systems in
multiplexing schemes has recently been investigated. Moreover it has
been shown recently [20] that the more general class of (x,) -
systems is required to yield the extremal configurations for the
Doehlert-Klee problem [13] ; prior to this it appeared that the sub-
class of (n,\) -designs known as BIBD's (discussed below) contained
the required configurations.

2. PRELIMINARIES

An (n,))-design D (regular pairwise balanced design) is a
system consisting of a finite set U of elements (called varieties)
and a collection B of subsets of V (called blocks) such that
(1) every pair of distinct varieties is contained in precisely
A blocks.

(2) every variety is contained in exactly x blocks.

Subsequently, we let v,b,n denote the number of varieties, num-
ber of blocks and x - A respectively.

A balanced incomplete block design (BIBD) is an (x,1)- design
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in which every block has the same cardinality (size) k and for which
n>X>0. The numbers (v,b,n,k,\) are called the parameters of the
block design. BIBD's have received a great deal of attention and
there is extensive literature on the subject. Again, a detailed sur-
vey of BIBD's is beyond the scope of a single paper and so we re-
strict ourselves to the more general (A,1) -designs. It should be
noted that the deletion of a £- subset of varieties from a BIBDwith
parameter set (v,b,x,k,X) gives an (#,1)-design on v - % varieties. It
is not true however that every (x,A)-design is obtainable in this

manner. An example of the latter type of design can be found in [30].

H.J. Ryser [29] has shown that for any (#,A) -design D if b=v
then A(v-1) = n(n-1) and that D is a BIBD with block size x. From
this or otherwise it can be shown that for any (x,))-design, b > v.
An (x,A)-design is called elliptic, parabolic or hyperbolic accord-
ingly as the expression A(v-1) - n(n-1) is negative, zero or posi -
tive. An (x,A)- design D is said to be reducible if D contains a
block containing all varieties (called a complete block) or a set of
v blocks each of size one whose union is V (called a complete set of
singletons). If D is not reducible then it is irreducible. It was
shown in [30] that all irreducible designs with X = 1 are elliptic
or parabolic. This is not true in general for A > 1. This will be
discussed in greater detail in section 5.

Let D be an (x,)A)-design defined on the variety set V. D' is
called a restriction of P to V' if V'« V and D' is obtained from P
by deleting the varieties of V/V' from the blocks of D. We will in-
troduce other definitions as they are required.

3. EMBEDDINGS

By definition, an (x,))-design D is embeddable in an (x,1)-de-
sign D' if D is isomorphic to some restriction of D', The first re-
sult we cite concerns the embeddability of a BIBD with parameters
(v,b,n,kR,A) in an (x,A) design. The proof of Theorem 2.1 appears in
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[30].

THEOREM 3.1 A BIBD with parameters (v,b,n,k,\) can be embedded
in an (n,))-design only 4if k divides r-).

An (n,))-design is called trivial if it contains A complete
blocks ; otherwise , it is called non-trivial. For any non-trivial

(n,1)-design , it can be shown that the maximum mumber of varieties
is n* +n+1, and any non-trivial (x,1)-design attaining this is a
finite projective plane of order n. What can be said about embedding
(n-1)-designs into these extreme configurations? The following two
theorems provide some results in this area.

THEOREM 3.2 1§ D 48 a non-tnivial (n,1)-design having v <n® +n
varnieties and b<n®? +n+1 blocks and D contains a block of size n -1
then D 4is embeddable in an (n,1)-design on v+l varieties.

If the number of varieties v in a non-trivial (x,7)-design D is
such that n? < v < n*? + n then a sharper result is possible. This is
stated as

THEOREM 3.3 14 D 44 a non-trnivial (n,1)-design on v varieties
where n* < v < n® + n then D s embeddable in a finite projective
plane of onder n. (L.e., a BIBD with parameterns (n2+n+1, n®*+n+1,
n+l, n+l1, 1).

A proof of Theorems 3.2 and 3.3 can be found in [39]. Theorem
3.3 has recently been strengthened; it has been shown [22] that if D
is a non-trivial (x,1)-design having v > n* - a varieties where
o < Vn/Z then D is embeddable in a finite projective plane of order
n.

A particularly important class of design in embedding theorems
is the (Zn,n)-designs. For such designs, we have the following theo-
rems.
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THEOREM 3.4 1§ D 4s a non-tnivial (Zn,n)-design having v va-
nieties where n®> + 1 <v<n®+n then D is embeddable in a non-
tuivial (2n,n)-design having n* + n + 1 varieties.

It was shown by J.H. Van Lint [31] that the existence of a non-
trivial (Zn,n)-design on n® + n + 1 varieties implies the existence
of a finite projective plane of order n. A generalization of this
result appears in [16] and [36]. We state it as

THEOREM 3.5 There exists a non-inivial (Zn,n)-design having
v=mn®+n+l -avanieties whene o < 2n-4 L4 there exists a non-
tivial (n+1,1)-design having v varieties.

This result was independently proved by J.I. Hall [16] where he
n*-2n-2

shows it is true for a < >

It is clear that Theorem 2.5 will provide us with a non-exis-
tence result for (Zm,n)-designs when no finite projective plane of
order n exists. As was mentioned earlier, the (Zn,n)-designs are a
very important class of (x,A)-designs. Any (x,))-design ? on v va-
rieties implies the existence of a (Zn,n)-design on v -1 varieties .
Because of this relationship one might expect that there is.an
embedding theorem for (x,A)-designs (A > 1) similar to Theorem 2.4.
This is not in general true. In [37], it is shown that there exist
non-trivial (4,)A)-designs on n®? + n varieties which camnot be
embedded in any (1,\)-design on n* + n + 1 varieties.

4. UPPER BOUNDS

Define the function v (x,)) to be the smallest positive integer
such that if v > v (x,A] then the only (x,A)-designs on v varieties
are trivial. This function was first introduced by V. Chvital [4]. A
related function introduced in [15] is v, [1,1), is the smallest pos-
itive integer such that if v > v, (n,)A) then the only (x,A)-designs
on v varieties are reducible. Finally, up(n.,?] which appears in
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l&.n-desagn Don v lr,1) varieties in which the mumber of

b!mks mvislessﬁmweqmltmu +n+1,
Litﬂe is known about v (1, ) and vp(m,i).

upper bound for v (1,1) is m and the following i

ver , a good

vpln, 1) < v, (n,1)

v, (1,1) < v, ().

Staton and Millin [30] gave the following bound for v, (x,1).

voln,1) < n? + n+ 1.

gthened version of Theorem 3.3, it is possille

THEOREM 4.2 Fon any positive integer i

(£) v (n,1) = n? + n+ 1 &f n is the order of a finite
pﬁcm. ;

(£d) v, (n,1) < n? - o if o < /n/Z and n is not the onder of a ginite
wi;."j.'*. plane. -
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The first case of interest for the function v n(/L,I) occurs when
n =6, since it is well known that no finite projective plane of or-
der 6 exists. It has been shown [27], [18] that v, (7,1) = 31. The
only example known of a non-trivial (7,1)-design on 31 varieties is
obtained by adding a complete set of singletons to the finite pro-
jective plane of order 5. It has been shown ([23], [24], [25], [26])
that this is the only way of obtaining a non-trivial (7,1)-design
on 31 varieties. Thus v (7,1) < 31. It is shown in [26] that
25 < vp(?,!) < 28, and thus if there exists a non-trivial irreduc-
ible (7,7)-design on 30 varieties it must contain at least 44
blocks.

For A > 1, the following result on v (x,)) appeared in [28].

THEOREM 4.3 For positive integens « and A, such that

Azmt -1 vilad) =) 2,

The (#,A)-designs which have A > n* + n - 1 and v = A + 2 have
been completely characterized [28]. They have block sizes of 1, v -1
and v only and thus are called near-trivial. This notion of near triv
ial has been generalized [6] to z-trivialdesigns. A z-trivial (x,})-
design has only block sizes

b5 Baliate 5 [%- % I], W= B g ) Jean 5 L0

Clearly a 0-trivial design is trivial, a J-trivial is near-trivial
and any z-trivial is a z + £-trivial design for { a positive inte-
ger. A few results on z-triviality have been obtained [6] but this
concept has been by no means explored fully. The only designs satis-
fying the hypothesis of Theorem 4.3 are either 0-trivial or 7-trivi-
al.

Theorem 4.3 and a fundamental result in [5] concerning block
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sizes of (Zn,n)-designs leads to

EM 4.4 For any positive &

v, () < max (A+2, n2 + n# 1},

A proof of this appears in [40]. Recently this result has beer

(£) wolm) =2+ 2 if A2n®+n- 1.
(£d) v, (1) = n* +n+ 1 4§ A<n® +n-1 and n 4s the onder of
a finite projective plane.

As was mentioned earlier, little is known about the functions
v, (#,A) and vig(n., 1). result on v, (#,)) appears in [37].

5’.;_ (n,A) = n? +n+ 1

iff n 4s the onder of a 44
one of n*,2n on n+ 1.

ane and n 45 equal to

Other results on v, (#,)) can be fc

und in ([15] , [28]).
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5. (x,A)-DESIGNS AND CODES

~ For a much broader study of' the ideas in this section the
reader is referred to [1]. A block code of length n, size N and dis-
tance d over an alphabet A of ¢ symbols is a collection of vectors
with entries from A of length n such that the Hamming distance (the
number of components in which two vectors differ) between any two

vectors is at least d. N is the number of vectors in C. A fundamental
result in this area is the Plotkin bound. (Theorem 5.1).

THEOREM 5.1 1§ a block code C of Length n, s4ze N and distance
d exists, then

4 < nNlg-1)
" (N-1)gq

Let D be an (n,))-design D having v varieties and b blocks. De-
fine the v x b matrix (incidence matrix of D) !

EFT v € B,

= ot - =
A [a‘: § where aj’j

0 otherwise.

.

One can consider the rows of A as binary codewords of a block
code of length b and size v. The distance between any two codewords
is precisely 2(n,)) and every codeword contains precisely 2 ones.
Such codes are called equidistant-equiweight block codes and are
equivalent to the incidence matrix of (x,A)-designs. Many results on
(z,A)-designs have been given using the notation of equidistant
codes. The reader is referred to [6], [16], [17], [31].

J. Hall [17] , using the equidistant-equiweight code approach,
was able to settle a conjecture of Stanton-Mullin. Recall from sec-
tion 1 that Stanton and Mullin had shown that any (x,7)-design was
either elliptic or parabolic. They conjectured that this was also
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true for any (n,))-design which was irreducible. Hall proved the
cbnjectum for X = 2 and found counterexamples for A > 3.

The proof of theorem 4.4 relies heavily on an inequality for
bounding the block sizes in (Zn,n)-designs. This inequality came as
a result of studying equidistant codes [5]. One has the advantage-of
using the Hamming distance properties of the code which is not an
evident property of the corresponding (,)-design.

' Before ending this section, we mention that if equality holds
in the Plotkin bound of Theorem 5.1, then it can be shown that the

code can be used to produce a very particular type of BIBD.The realer
is referred to [1] for details.

6. A-SYSTEMS

A strong A-system is a set of subsets {S,, S,, ..., S } from a
finite set such that |S | = £ for each £ and such that there exists
‘a set L with the properfy that S; N'S; = L for all &7 j. The fol-

lowing theorem is due to Erdés and Rado [14].

. THEOREM 5.1 Thene exists a function ¢(m,t) such that every
family S, S,, ..., Sb of sets with |si| = £ contains a strong
A-system having mone than m sets.

Erdss and Rado showed that wit < d(m,£) < 2! 't.
- This was later improved by Chvdtal [4] and by Abbot and Hanson to

¢(m, ) < M

ot
Chvdtal deduced the Erdés-Rado theorem from Ramsey's theorem |[4| by
introducing the idea of a weak A-system. A weak A-system is a collec-
tion of subsets S, S, ..., S, from a finite set such that lsil a- o
for each £ and such that there exists an integer % with the property
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that ISL n SJ-I = % for all £ # §. As an example, every finite pro-
jective plane is a weak A-system but not a strong A-system. Clearly,
every strong A-system is a weak A-system but the converse is by no
means true . The converse is true , however, when the number of
subsets in the weak A-system is large. If one considers the so called
dual of a weak A-system (i.e., let the subsets be elements and ele -
ments be subsets such that an element is in a subset if the original
subset contained the element associated with the new subset). Then
one obtains an (x,))-design with n = £ and X = £. Hence, all of the
results of sections 2 and 3 are applicable to weak A-systems.

We end this section by mentioning that P. Erdés conjectures
that

olm,2) < (em®

for some absolute constant C. He offers a prize of one thousand dol-
lars to anyone who can settle the question.

7. SOME GENERALIZATIONS OF v (x,X).

The basis of sections 2 and 3 is the study of the function
v, (#,X). Recall that it is the smallest positive integer such that
if o uo(lL,M then the only (x,A)-designs on v varieties are triv-
ial. Below we will give a number of generalizations and specifica-
tions of this function.
(I) Instead of an (x,))-design , suppose we consider a collection
B of blocks from a v-set V such that every variety of V iscon-
tained in 4 blocks of B and any distinct unordered pair of va-
gr sevy A A} and
Ay €A, €A, <... <A < We call such a system an (ndX, , A, , ...,Aé})-
design. These designs have been studied in [10] and [11]. When & =1
it is clear that we have an (x,\)-design. In what follows we re-
strict our discussion to the case 4 =2 since it is quite different
from 4 =1 and gives the flavour of the more general situation.

rieties is contained in X blocks where A € {i,, A
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Let D be an (x,{), A,})-design having b blocks. By results of
Deza [11], we know that there exist minimal functions €y C,5 €. cand
C“ of x, )‘1 and )\2 such that

@ If vz Clb, then P contains ll complete blocks. Notice that in
the case of an (x1,))-design the same phenomena occurs but that the
size of v did not depend on b.

(b-1,)(b-2,]

(b) Ifv< Czb then v < In the case when we have an
(=X, ) (n=1,)

(,1) -design if v > v, (x,A) then v = 2%

() If v> (b, let B.» B,y -, B),L be the blocks containing a va-
riety x. Then B /{x}, B,/{x}, ..., B,/{x} is a trivial (A ,A,]-design
having 1 blocks and %M1 varieties. Again, in the case of an [(4,A)-
A=A
2
design v (1,1) takes the role of C,b. As a consequence of the above,

we have that (A, -7\1)[(71.-?\1).

@ Ifv >C,.b' then there exist x,y € V (x#y) and x',y" € V (x' #y4')
such that x,y are contained in A, blocks and x',y' are contained in
A, blocks of B. In other words, for V sufficiently large both A : and
A, must be realized for some pairs of varieties. This property has
no meaning in the case of an (x,))-design.

As was indicated above , the four functions, Clb, c,b, Cab and
C,b all collapse to v (x,A] in the case of an (x,A])-design: Good
estimations of v, (2,A) are known but little can be said about C ,
C,, C, and C, except that they are well defined.

Few results on the above generalizations are known even in the
case of 4=2. One does not even have an estimation of their magni-
tudes relative to each other. However, in [11] the following was ob-
tained as a generalization of the Fisher inequality for (x,))-design
as applied to (z, {0, A,})-designs. It was shown that if b > v in an
(r, {0, A,})-design then A [#. In this case, we see that ¢, =1 for
an (x, {0, A,})-design. The dual of the locally symmetric designs of
Cameron [3] give an example of an (x, {0, A,})-design with v > b but
not having the property that the design formed from the blocks con-
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taining a given variety is a trivial {A 0)-design. Other examples
of (n, {0, A,})-designs are the dual of a BIBD (this is a (k; {0 1})-
'de51gn) and the dual of .any affine resolvable design. .

One further generalization is in the following area. We call a
collection of blocks B from a v-set V, an (x, Ap» A, )-design if
every variety occurs in x blocks of B, every distinct unordered pair
of varieties in A blocks and every distinct unordered "3-set occurs
in X, blocks. If we do not require the condition for A, then we
write (x, -, },)-design. It is clear that the condition on A, does
not imply the condition on A = The above definitions can easily be
extended to A, A, ..., A, if desired. From remark 5 of [6] and
Theorem 9 of [11] it follows that there exist minimal functions
C1 (n,)«l,)\z) and c, ()L,Az) such that

(@) If v>C, then any (x, A, },)-design contains ), complete
blocks. Deza and Frankl [7] conjecture that C = 0(x). Vanstone [35]
has shown that C_ = 0(r-}). '

() If v >C, then any (x,-,A,)-design has A, complete blocks. An
interesting question is whether or not v LAl > ¢, (X)),

8. EQUIDISTANT PERMUTATION ARRAYS

In this section , we present another closely related problem

which was introduced by D.W. Bolton [Z].

An equidistant permutation array (E.P.A.) is a vxa array in
which every row is a permutation of the integers 1,2, ... ,x and such
that any two distinct rows of the array have precisely A colummns in
common. We denote such an E.P.A. by A(r,A;v]. Define R(x,A) to be
the largest value of V for which there exists an A(x,);v).

A resolution R of an (x,)A)-design ¥ is a partitioning of the
blocks into classes (called resolution classes) R , R, ER R, such
that each variety of D is contained in precisely one block of each
R‘(_, 1 <4{<n, An (n,1)-design P is called orthogonal if there are
two resolutions R, R' of P such that any resolution class of R has
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at most one block in common with any resolution class of R'. The
following result appears in [9].

THEOREM 6.1 There exists an Aln,\;v) £ff there exists an on-
thogonal (n,))-design having v varieties.

As a consequence of this, the upper bounds of section 3 on
v, (n,Xl can be applied to R(x,A). The first general bounds for
R(n,A) where obtained in [6]. It should be noted that orthogonal
(n,A)-designs form a very particular class of (x,))-designs and
hence in many cases the upper bound for v : (2,A) may not be a partic-
ularly good bound for R(1,)). For instance, it can be shown [8] that

R{n,1) < n(n-3).
_However, it should also be mentioned that
" RI(M3,)) = A2 for all A > 12.

A number of results concerning E.P.A.s have been obtained. The
interested reader if referred to [6], [8], [9], [19] and [38] in the
bibliography.

One can generalize the idea of an E.P.A. by asking that any two
distinct rows of the array have at least (at most) A columns in
common. Analogously one can define R(x, 3)()[!2(4, 9)) to be the max-
imum number of rows in such an array. Such arrays have been investi-
gated ([6],[7]).

9. SOME OPEN PROBLEMS

We list a number of problems which remain open.

1. What are the values of v (7,1) and vp(7,1)?

2o 0 i volfr.,l) = vy (n+1,1) for small A where i = » - A?

3. If n is not the order of a finite projective plane then, is
v, (n#1,1) = g* + q + 1 where ¢ is the largest integer less than
n for which there exists a finite projective plane of order g?

4. Is ¢(m,2) < (Cm)‘t’ for some absolute constant C?

5. Let T be a set of resolutions of an (1,1)-design with the prop-
erty that any two resolutions of T are orthogonal. It is known
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