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ABSTRACI' 

In recent times (~,A) - designs and related configurations have 

been discussed by many authors in many contexts. Because these eon­

figurations have both mathematical and praetical interest, it is the 

purpose of the present paper to bring together several of these re­

sults. Related configurations include the /). - systems of Erdos and 

Rado, and balanced equidistant codes and equidistant pennutation ar­

rays . 
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RESJMEN 

Recientemente han sido discutidos por varios autores en dife­

rentes contextos, diseños t~,A) y configuraciones relacionadas. Como 
estas configuraciones tienen interés matemático y también práctico, 

el objeto de este trabajo es tmificar algtmos de estos resultados. 

PJnfiguraciones relacionadas incluyen el sistema - 11 de Erdos y Ra­

do J códigos equidistantes balanceados y arreglos penrutacionales e­

quidistantes. 
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1 . 	 IN'IRODUCITOO 

The designs discussed in tbis paper arise naturally in many ar­

eas of combinatorial theory , especially coding theory and COUl­

binatorial design theory. In the case A= 1, they are a subclass of 

the class of pairwise balanced designs , the latter being a central 

tool of design theory. Al though a thorough discussion of this sub­

ject is beyond the scope of the present survey, the reader is re ­

ferred to the works of Wilson [41], [42], for fundamental results in 

this aTea. Although there are many otber papérs en this top- c, ref­

erences to these are omitted since our main concem 15 with 111., AJ ­

systems. These systems have also arisen in the theory oí balanced 

equidistant codes, see [lJ , [29J, etc. Sorne of the Tesults cited in 

this survey are basic to the establishment of good bounds for the 

dictionary size oí such codeso Furtber, the use of (11.,>") - systems in 

mltiplexing schemes has recently been investigated. MoreoveT it has 

been shown recently [20] that the more general class of (It,>") ­

systerns 15 Tequired to yield the extremal configurations for the 

Doehlert-KIee problem [13J ; prior to this it appeared that the sub­

class of (It,A) - designs known as BIBD' s (discussed below) contained 

the required configurations. 

2. PRELIMINARIES 

.An (IL, A) - design. V (regular pairwise balanced design) 15 a 

system consisting of a finite set V of elements (called varieties) 

and a collection B of subsets of V (called blocks) such tOOt 

(1 ) every pair of distinct varieties is contained in precisely 

A blocks. 

(2) 	 every variety is contained in exactly It blocks. 

Subsequently, we let v, b, YL denote !he number of varieties, num­

ber 	of blocks and It - A respectively. 

A balanced incomplete block design (BIBD) is an (IL, A) - design 
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in which every block has the s3J1le cardinality (size) k and for which 

11.. > A> O. TIle numbers Iv, b,11.., k, >..} are called the parameters of the 

block designo BIBD's have recei ved a great deal of attention and 

there is extensive literature on the subject. Again, a detailed sur­

vey of BIBD' s is beyond the scope of a single paper and so we re­

strict ourselves to the more general (It,A) - designs. It should be 

noted that the deletion of a ;t- subset of varieties froro a BIBDwith 

parameter set Iv,b,lt,k,AJ gives an 11l.,AI-design on v -;t varieties. It 

is not true however that every (Jt, >.. ) -design is obtainable in this 

manner. An example of the latter type of design can be fot.md in [30J. 
H.J. Ryser [29J has shown that for any (It,A) - de5ígn V if b = v 

then ). (v-1) = 1t(1t-1) and that V is a RIBO with block size IL. FrOID 

tbis or otherwise i t can be ShOWIl tbat for any (11.., A) -design, b ~ v. 

An (It,>..)- design is c~ed elliptic, parabolic or hyperbolic accord­

ingly as the expression ).(v-1) - Jt(Jt-1) i5 negat ive, zero or posi ­

tive. An (It,A)- design V i5 said to be reducible if V contains a 

block containing all varieties (called a complete block) or a set of 

v blocks each of 5ize one wh05e union is V (called a complete set of 

singletons) . If V is not reducible then it i5 irreducible. 1t was 

shown:in [30J that all irreducible designs with A = 1 are elliptic 

or parabolic. This is no t true in general for ). > 1. This wiIl be 

discussed in greater detail in section 5. 

Let V be an (Il,). ) -design defined on tlie variety set V. V' is 

called a restriction of V to V' if V I e V and V' is obtained from V 

by deleting the varieties of V/V' from the blocks of V. We will in­

troduce other definitions as they are required. 

3. EMBEDDINGS 

By definition, an (1L,).l-de5ign V is embecldable in an (Jt.)')-de­

sign V' if V is isomorphic to some restriction of V' . The first re­

sult we cite concems the embeddability of a BIBD with pararneters 

(v,b,IL,k,A) in an (Jt,A) designo The proof of Theorem 2.1 appears in 
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[30J. 


THEORIM 3. 1 A BIBV w.Wt pcvr.ame:tw (v,b,Jt,k.,AI c.an be embed.ded 

.&t an (IL, A) -du,ign onllj ¡ó k cUvi.du IL-A. 

AA (1L, A) -design is called trivial if i t contains A complete 

blocks; otheoose , it is called non-trivial. For any non-trivial 

(lL,l )-design, it can be shown that the rnaximum number of varieties 

is n2 + n + 1, and any non-trivial (Il., 1)-design attaining this is a 

finite projective plane of order n. What can be said about embedding 

11l.-7 ) -designs into these extreme configurations? The following two 

theorems provide some results in this area. 

THEORfM 3.2 16 V.i..6 a. non-.tJúv.i..a1.. (lt,l)-duign hav.úLg v~n2 +n 

vaJÚw..u a.nd b .5..n2 + n + 1 bioc.k6 an.d. V con:t.a...i.M a. block 06 l>.ue It - 1 

:the..n V .u embedd.a.bie .in ay¡ (11., l)-duign on v+ 1 valtie.:U..e.6. 

If the number of varieties v in a non-trivial (lI.,l)-design V is 

such that n2 ~ v ~ n2 + n then a sharper resul t is possible. Tbís is 

statedas 

THEOREM 3.3 16 V 1..6 a. non-.tJúvw (lI.,ll-duign on v vaJLiw..u 

wheJte.. n2 ~ V ~ n2 + n :titen V .i..6 embeddab.te in a. fri.yWte.. pJt.oj e.c.:U.ve 
2pla.ne 06 olLdeJt n. (Le... , a BTBV w,i;th paJr.ame;t(UU¡ (n 2 

.,. n'" 1, n .,. n + 1, 

n +7, n.,.J, 1) . 

A proof of Theorems 3.2 and 3 . 3 can be fmmd in [39J. Theorem 

3.3 has recently been strengthened' i t has been shown [22J tbat if V 

is a non-trivial (11.,1) -design having v ~ n2 
- a varieties where 

a < In/2 then V is embeddable in a finite projective plane of order 

n. 
A particular1y important class of design in embedding theorems 

is the (2 n, n )-designs . For such designs, we have the following theo­

rems. 

http:e.c.:U.ve
http:embeddab.te
http:non-.tJ�v.i..a1
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TIffiOREM 3.4 1~ V i6 o. non-:tJúv,lal (2n,nl-du.ign ha.ving v vo.­
2 n2Jri..e;Uu wheJle n + 7 ~ v ~ + n :the.n V ió embe.ddab!e i.n. o. non­

2ruv.<o1.. (2n, nI -du.i.gn ha.vi.n.g tt + n + 1 Vl1.lÚe:Uu. 

1t was shown by J.H. Van Lint [31] that' the existence of a non­

trivial (2n,n)-design on tt2 + n + 1 varieties implies the existenee 

of a finite projective plane oí order n. A generalization oí thi s 

result appears in [16J and [36J. We state it as 

'llJIDREM 3.5 TheJte. exLtd.h a non-tJúv.i.ai. (2n,nl-du.ign having 

v = n2 + n + 1 - el v~u whCVle el .s. 2n- 4 ,U6 t:hCVle e.xi.hú a. non­

:tJúv.i.ai. (n+ 1 , 1 ) -du.tgn havblg v vl1.lÚe:Uu. 

This result was independently proved by J.1. Hall [16J where he 

. n2 -2n-2
shows i t 15 true for a..$. 2 . 

1t is elear that Theorem 2.5 wiIl provide us with a non-exis­

tenee result for (2n,n) - designs when no finite projeetive plane of 

order n exists. As was mentioned earlier, the (2n,n) -designs are a 

very important c1ass oÍ (Jz.,AI-designs. Any (It,A)-design V on v va­

rieties implies the existence of a (Zn,n) -design on v - 7 varieties . 

Beeause of this relationship one might expect that there i5 . an 

embedding theorem for (Jt,A)-designs (A > 1) similar to Theorem 2.4. 

This i5 not in general true. In [37J, it is shown !hat there exist 

n2non-trivial (It, A )-designs on + n varieties whieh eaImot be 

embedded in any (1t,A) -design en n2 + n + 1 varieties. 

4. UPPER BOUNDS 

Define the Metían V IIt,A) to be tite smallest positive integero 
sueh that if v > vo{Il,A) then the only (Il,A)-designs on v varieties 

are trivial. Thi5 funetíon was first introduced by V. Chvátal [4J. A 
related ftmetion introdueed in [15J is v (Il,A) , is the smallest pos­

l 

itive integer such that if v > v (Il,A) then the only (It,)')-designs
l 

on v Yarieties are reducible. Finally, v (1t,1) which appears in 
p 

http:tJ�v.i.ai
http:non-tJ�v.i.ai
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[251 is the largest positive integer such that there exists a non­

trivial {lI.,l J-design V on vp (It, 11 varieties in which the number of 

blocks in V is less thanor equal to n~ + n + 1. 

Little is known about v1 (It, ) and vp lit, 1) . However , a good 

upper bOl.md for V (It,A) is known and the following inequalities hold. o 

and 

StatoÍl and Mullin [30] gave the following botmd for V (It, 1J • o 

rnEORDI 4.1 Folt any po.6Ltive. bttegeJL IL 

Applying the strengthened version of Theorem 3.3, it is possible 

to improve theorem 4.1. 

'Il-IIDRFM 4.2 FOIL tmlJ po.6.i.itive. .i.nteg eJr. It. 

n2r.lJ V lit, 1) = .,. n .,. 1 ió n i.6 t:he OMeJr. 06 a. {y(..n.i.J;e. pItOjeJ!tive.o 
plane.. 

(U) V (It, 1) ~ n~ - a .l6 a < .fñT2 a.nd n .i.6 not: :th.e. OMeJL 06 (1 fPLi,.t.eo 

pIlO j e.c.t.ive. plane. 
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The first case of interest far theñmction v (1t,1) occurs when o 
n = 6, since it is well known that no firrite projective plane of or­

der 6 exists. It has been shown [27J, [18J that v (1,]) = 31. '!'heo
on1y example known of a non-trivial (7,1) - design on 31 varieties is 

obtained by adding a complete set of singletons to the finite pro­

jective plane of order 5. It has been shown ([23], [24J , [25} , [26J 1 

that this is the only way of obtaining a non -trivial (7, 1 ) - design 

on 31 varieties. Thus VI (7,1) < 31. Tt is shown in [26J that 

25 5.. vP17 JI) _ 28, and thus if there exists a non - tri vial irreduc­

ible (1,11- design on 30 varieties it nrust contain at least 44 

blocks. 

For A > 1, the following result on V (IL,A) appeared in [28].o 

TIIEOREM 4.3 FOIL po~i.,:Uve i.n;tegV!l. IL and A, .6u.ch tha.t 

1\ ~ ~ ~2 + ~ _ 1, v o (~'L, 1\'J -- ,1\ + ,.,. 2• 

The lit, A) -designs which have A ~ n2 + n - 1 and v = A + 2 have 

been completely characterized [28J . They have block sizes of 1, v - 1 

and v onlyand thus are called near-ttivial. This notion of neartri~ 

ial has been generalized [6J to z-trivial designs. A ,-trivial (It., AJ ­

design has only block sizes 

1,2, ••. , [; +1].V-Z.V = Z+I, •••• V-1.v. 

Clearly a O-trivial design is trivial, a 1-trivial is near-trivial 

and any z-trivial is a ,+ i.-trivial design for i. a positive inte­

ger. A few results on z-triviality have been obtained [6] but tbis 

concept has been by no means explored fully. 'file only designs satis­

fying the hypothesis of Theorem 4.3 are either O-trivial or 1-trivi­

al. 

'Í'heorem 4.3 and a ftmdamental result in [S] concern.ing block 

I 
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sizes of {2n,nl-designs leads to 


THEORfM 4. 4 FOJL any pO.6ilive WegeM JL artd A (JL > A) 

A proof of this appears :in [40J . Recently this resul t has been 

improved ([22J). 

THEOREM 4.5 FOJL aYUJ po.6..u,¿ve bttegVL.6 JL a.n.d A (Jt > A) 

(i) VO(Jt,A) :: A + 2 i.6 A ~n2 + n - 1. 

n2fU) v (JL,A) :: + n + 1 i6 A < n2 + n - 1 and n i...6 t.he oJtd.eJI. 06 o 

a 6f.n.(.te. pMje.c;Uve. plane.. 


2(.u¡) V (IL, Al ~ max {A .t 2, n - 1} -i6 n i...6 not. t.he. aJLdeJI. 06 a 6.út-Ue.o 
pILO j e.ctive p.ta.ne.. 

As was mentioned earlier, little is known about the functions 

v
1 

(IL,A) and vp(Jt, 1). One result on VI (JL, A) appears in [37J. 

THEOREM 4.6 Lú n :: Jt - A. The.n 

} (JL,>"1 :: n2 + t't + 1 
1 

-ió 6 n i...6 t.he. OII.deJI. o6 a (yúú;tR. pILa j e.clive. pR.a..ne. and IL i...6 e.qual t.o 
one. 06 n2 

, 2n alL n ,+ 1. 

Other results en V1(IL,A) can be fotmd in ([15], [28J). 

http:pR.a..ne
http:6f.n.(.te
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S. (Jr.,A}-DESIGNS AND eODES 

For a much broader study of· the ideas in this section the 

reader is referred to OJ. A block code of length n, size N and dis­

tance d over an alphabet Aof q symbols is a collection of vectors 

with entries from A of length n such that the Hamming distance (the 

munber of components in which two vectors differ) between any two 

vectors is at least d . N is the munher of vectors in C. Aftmdamental 
result in this area is the Plotkin bOl.md. CTheorem 5. 1) . 

TI-IEOREM S. 1 1n a. bloc.k c.ade. e a6 le.ngt1t n, h.[Ze. N and cLi..6ta.nc..e. 

d ex.iA:á I tite.n 

d ~ nN(tt- 11 
(N-1)q 

Let V be an (It, AI-design V having v varieties and b blocks. De­

fine the v x b matrix (incidence matrix of V) 

1 .[6 v. e B. 
-<.. j 

a .. " 
-<..} 

One can consider the rows of A as binary codewords of a block 

code of lengtb b and size v. The distance between any two codewords 

is precisely 2 (It,A) and every codeword contains precisely It ones. 

Such codes are called equidistant -'equiweight block codes ánd are 

equivalent to the incidence matrix of (1l,A) -designs. Many results on 

(It, A) -designs have been given using the notation of equidistant 

codes. The reader 1s referred to [6], [16], [171, [31]. 
J. Hall [1 7] , using the equidistant-equiweight code approach, 

was able to settle a conjecture oE Stanton-Mullin. Recall from sec­

tion 1 that Stanton and M..1llin had ShOWIl that any (Jt,l) - design was 

either elliptic or parabolic. They conjectured that this was also 
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true for any (IL, Al-design which was irreducible. Hall proved the 

conjecture for A = 2 and found cOl.D1terexamples for A ~ 3. 

The proof of theorem 4.4 relies heavily on an inequality for 

bOlmding the block sizes in (2n,nl-designs. This inequality carne as 

a result of studying equidistant codes [5J . One has the advantage of 

using the Hanmting distance properties of the code which is not an 

evident property of the correspondllg (IL, A) -designo 

Before ending this section, we mentíon that if equality holds 
in the Plotldn bound of Theorem 5.1 , then í t can be shown that the 

code can be used to produce a very particular type of BIBD.The reater 

is referred to [1] for details. 

6. f¡-SYSfEMS 

A strong ~- system is a set of subsets {SI' S2' ••• , Sn} from a 

f:inite set such that Is.1 :: :t for each 1. and such that tbere exists 
.(. 

a set L with the property that S,¿ n Sj :: L for all J.. I j . The fol­

lowing theorem is due to ErdOs and Rado [14]. 

THEOREM 5. 1 TheJle. ~ o. 6une.:t.i.on cp (m ,:tl ~1.Lc.h tho.:t e.veJtrj 

6am.i.i.y S1' S2' "', scp 06 ¿,úA w,Uh ISi. \ :::t e.o~ o. ¿'WYIfj 

f¡-¿,y¿,:te.m ha.vi.ng mM.e. :tha.n m ¿,W. 

Erdos anrl Rado showed tbat m:t < <p (m,.t) < :t! m:t 

Tbis was later improved by Chvátal [4J and by Abbot and Hanson to 

Chvátal deduced the Erdos-Rado theorem from Ramsey's theorern 141 by 

introducing the idea of a weak f¡-system. A weak Li-system js a collec­

tion of subsets S , S , "" S from a finite set such that Is·1 :: :t 
1 2. m A.. 

far each i. and such that there exists an integer 9. with the property 

http:ha.vi.ng
http:6une.:t.i.on


•• 

-150­

that Is.¿ n s j i = 9. for all .¿ I j . As an example, every fini te pro­

jective plane is a weak ~ -system but not a strong ~-system. Clearly, 

every strong 6-system is a weak ~ -system but the converse is by no 

means true. The converse is true, however, when the number of 

subsets in the weak .6. -systern is large. lf one considers the so called 

dual of a weak .6. -system (i.e. , let the subsets be elements and ele ­

ments be subsets such tbat an element is in a subset if the original 

subset contained the elernent associated with the new subset). Then 

one obtains an (~,Al-design with ~ = t and A = t. Hence, all of the 

results of sections 2 and 3 are applicable to weak .6.-systems. 

We end this section by mentioning that P. Erdos conjectures 

that 

<j¡(m,tl < (Cm) t 

for sorne absolute constant C. He offers a prize of one thousand dol­

lars to anyane who can settle the question. 

7. SOME GENERALlZATIONS OF v o (~, A) • 

The basis of sections 2 and 3 is the study of the function 

V (It, A) . Recall that it is the smallest positive integer such thato 
if v > VO(~IA} then the on1y {It,A)-designs on v varieties are triv­

ial. Below we will give a number of generalizations and specifica­

tions of this function. 

(1) Instead of an (~, A) - design , suppose we consider a collection 

B of blocks from a v-set V such that every variety of 11 is con­

tained in ~ blocks oí B and any distinct unordered pair of va­

rieties is contained in A blocks where A € {A l ' A2' •.. I \} and 

Al <A.2 <Aa < o <A.6 <1t.We call such a system an (~I{\' A
2 

, ••• ,A.6})­

designo These designs have been studied in [10J and [11J. When.6 = 1 
it is clear that we have an (~,A)-design. In what follows we re­

strict OUT discussion to the case .6 = 2 since it is quite different 

from.6 = 1 and gives the flavour of the more general situation. 
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Let V be an (Ir., {Al' A2}l-d~sign having b blocks. By results of 

Deza D1J, we know that there exist minimal functions e , e ,e and 
1 2 3 

e
4 

of Ir., Al arrd 1.. 
2 

such that 

Ca) If v > el b, then V contains \ complete blocks. Notice that in 

the case of an (Ir., Al - design the same phenomena occurs but that the 

size of v díd not depend on b. 
lb-Al) (b-\) 

(b) 	 If v < e2b then v ~ In the case when we have an 
(Il.-A

l 
) (Jt '- \~) 

b-)..
(Il,AI-design if v > VoIA,A) then v = 

Ce) I f v > C
3
b, let SI' S2' ... , BIl be the blocks containing a va­

riety x.Then B1/{x}, S2/{X}, "', SJt/{x} is a trivial 1"1,A21-design 

having A b 1 ocks and Il- Al varieties. Again, in the case o f an lit, A) ­
1.. -1..

2 

design Vo(Il/A) takes the role of Cabo As a consequence of the aboye, 

we have tbat lA - A 1111l - A !. 
2 1 1 

Cd) If v>Cl+b then there exist x,y e v lx/y) and x',y' € V(x' Iy') 

such that x,y are contained in Al blocks and x' ,y' are contained in 

1..2 blocks of S. In other words, for V sufficient1y large both Al and 

"2. must be realized for sorne pairs of varieties. This property has 

no meaning in the case of an (Ir., A ) -design . 

As was indicated above, the four functions, el b, e 2 b, eab and 

C,+b all collapse to vo(II.,"1 in the case of an (Il,A)-design, Good 

estimations of V (It, A! are known but 1ittle can be sáid about el'o 
C2, Ca and C except that they are well defined.4 

Few results en the aboye generaliza tions are known even in the 

case of ~ = 2 • One does not even have an estimation of their magni­

tudes relative to each other. However , ?-n [11J the following was ob­

tained as a generalization of the Fisher inequality for (Il,,,)-design 

as applied to (11., {O, A 1!-designs. 1t was shown that if b > v in an
2 

(Il, {O, A2.1)-design then 1..211/.. In this case, we see that Ca = 7 for 

an (Il, {O, A2})-design. The dual of the locally symmetric designs of 

Cameron [3J give an example o[ an (Il, {O, A })- design wi th v > b but 
2 

not having the property that the design formed frOID the blocks con­
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taining a given variety is a trivial (A , al-design. Other examples
2 

of {~, {D, A
2 
}I-designs are the dual of a BIBD (tbis is a (k,{O,l})­

design) and the dual of any affine resolvable design. 

One further generalization is in the following area. We call a 

collection of blocks B ÍTem a v-set V, an (Il, Al' ).2) -des-ign if 

every variety occurs in Ir.. blocks of B, every distinct unordered .pair 

of varieties in Al blocks and every distinct' Lmordered .3-set occurs 

in A2 blocks. If we do not require the condition for Al then we 
write lit, -, A } -designo It is clear that th~ conmtion on A does

2 2 

. not imply the condition on \ . The aboye definitions can easily be 

extended. to \, \, ... , A;t if desired. From remark 5 of [6] and 

Theorem 9 of [11J it follows !hat there exist minimal ftmctions 

el lit, A ,A } and e (It,A2) such that 
. 1 2 2 

(a) If v > el then any (,1[" Al ' A ) -design contains 1. complete
2 2 

bloas. Deza and Frankl [7J conjecture that el = o(It). Vanstone [35J 
has shown that C = O(It-A) . 

1 

(b) If v > C
2 

then any (Jt, -, \) -designhas A
2 

complete blocks. 1m 

interesting question is Whether or not VO(Jt,A) > C2 (Jt,A2 
). 

8. EQUIDISTAN!' PERWl'ATION ARRAYS 

In this section, we present another closely related problem 

which was introduced by D.W. Bolton [2J. 

An equidistant peIlllUtation array CE.P.A.) is a v x Jt array in 

which every row is a penm.ltation of the integers 1,2, •.. ,It and such 

that any two distinct rows of the array have precisely A columns in 

conmon. We denote such an E.P.A. by A(It,AjV). Define R(IL,A} to be 

the largest value oí V for which there exists an A(It,A;V). 

A resolution R of an [It, A) -design V is a partitioning of the 

blocks into classes (called resolution classes) R
1 

, R
2 

, ••• , R~ suCh 

that each variety oí V is cootained in precisely ane block of each 

R.(., 1 ~,¿ ~ IL. An (IL, A) -design V is called orthogonal ií there are 

tñ'O resolutions R, R' of V such that any resolution class oí R haS 
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at most one block in common with any resólution class of R' . The 

following result appears ID [9J . 

... 
TI-IEOREM 6.1 TheJLe. ex.J.l,ú an A(JL,>'jv) innthvr.e. e.U..óú an 01L­

thogonai. (IL., A)-de.6ign having v vaJÚmu. 

As a consequence of this, the upper bounds of section 3 on 

V (11.,>') can be applied to RIIL.,>.I. The first general bounds foro 
R{IL.,A) where obtained in [6]. It should be noted that orthogonal 

(II., A) -designs fonn a very particular class of (IL, Al -designs and 

hence in many cases the upper b01md for V IJr.,AI rnay not be a partic­o 
ularly good bOlmd for R{JL,A). For instance, it can be shown [8] that 

R(Il, 1) .$. 11. 111.-3) • 

However, it should also be mentioned that 

RIA+3,AI = )..+2 for all A ~ 12. 

A number of results concerning E.P.A.s have been obtained. The 

interested reader if referred to [6], [8], [9J, [191 and [38J in the 

bíbliography. 

One can generalize the idea of an E.P .A. by asking that any two 

dist:inct rows of the array have at least Cat mast) A coll.DllDS in 

cOIJIIlOn. Analogously one can define R(Il, >X) (R(Il, <Al) to be the max­

:imum number of rows in such an array. SUch arrays have been investi ­

gated C[6] , [7J) . 

9. S(J.fE OPEN PROBLPMS 

We list a number of problems which rema:in apeno 

1. 	 What are the values of VI 17, 1) and vp (7 ,1) ? 

2. 	 Is vo(Il,).) = voln+7,1) for small A where n = IL - ).? 

3. 	 Ii n is not the order of a f:inite projective plane then, is 

vo(n+l,l) = q2 + q + 1 wnere q is the largest integer less than 

n for Which there exists a finite projective plane of order q? 

4. 	 Is cIIlm,.t)· < (Cml.t' for sorne absolute constant C? 

S. 	 Let T be a set of resolutions of an IIL,A) -design with the prop­

erty that any two resolutions of Tare orthogonal. It 15 known 
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[8J that Ir l ~ ~ - A. Is this the best possible? 
6. Findgoed estimates fer the ft.mctions VO!It,A), V1(IL,A ) , v (IL,1 1,p 

R(IL,A), R(It,~A J , R(Jt,~AJ, C , C , C~ and C ... 
l 2 
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