
Alcívar-Bravo et al.                                                                                                                                                     184 
Rev. Téc. Ing. Univ. Zulia. Vol. 45, No. 3, Septiembre - Diciembre, 2022. 
Lei, Y., Liu, S., Li, J. (2010). Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology, 28(5), 
609–612. 
 
Machín Ferrero, L., Mele, F. D. (2018). Diseño y optimización de biorrefinerías de caña de azúcar con criterios de 
sustentabilidad. 26° Jornadas de Jóvenes Investigadores (AUGM 2018). Mendoza: Universidad Nacional de Cuyo. 
 
Mena Orduz, G. A. (2020). Estudio de viabilidad técnica y económica para la producción de xilitol a partir del 
bagazo de caña de azúcar. Tesis de grado. Colombia: Universidad de los Andes. 
 
Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K., Saxena, R. K. (2011). Comparative study on different strategies 
involved for xylitol purification from culture media fermented by Candida tropicalis. Separation and Purification 
Technology, 78(3), 266–273.  
 
Moncada,  J., Tamayo,  J.  A.,  Cardona, C.  A. (2014).  Integrating first,  second, and  third generation  biorefineries: 
Incorporating microalgae into the sugarcane biorefinery. Chemical Engineering Science, 118(1), 126–140.  
 
Moreno, A. D., Tomás Pejó, E., Ballesteros, M., Negro, M. J. (2019). Pretreatment technologies for lignocellulosic 
biomass  deconstruction  within  a  biorefinery  perspective.  Biomass,  Biofuels,  Biochemicals:  Biofuels:  Alternative 
Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, (2), 379–399.  
 
Nhuchhen, D. R., Basu, P., Acharya, B. (2014).  A Comprehensive review on biomass torrefaction. International 
Journal of Renewable Energy & Biofuels, 2014, 1–56.  
 
Peters, M. S., Timmerhaus, K. D., West, R. E. (1991). Plant design and economics for chemical engineers. 5ta ed. 
Singapure: McGraw-Hill Chemical Engineering Series. 
 
Ping, Y., Ling, H. Z., Song, G., Ge, J. P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid 
hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.  
 
Sadhukhan, J., Ng, K. S., Hernandez, E. M. (2014). Biorefineries and chemical processes: design, integration and 
sustainability analysis. Hoboken: Wiley Blackwell. 
 
Sánchez,  Ó.  J.,  Cardona,  C.  A.  (2008).  Trends  in  biotechnological  production  of  fuel  ethanol  from  different 
feedstocks. Bioresource Technology, 99(13), 5270–5295.  
 
da Silva, S. S., Chandel, A. K. (2012). D-xylitol: fermentative production, application and commercialization. Berlin 
Heidelberg: Springer Science & Business Media.  
 
Sinnott, R., Towler, G. (1805). Chemical engineering design. 4th ed. Oxford: Butterworth-Heinemann. 
 
Sultana,  A.,  Kumar,  A.,  Harfield,  D.  (2010).  Development  of  agri-pellet  production  cost  and  optimum  size. 
Bioresource Technology, 101(14), 5609–5621.  
 
Temmes, A., Peck, P. (2020). Do forest biorefineries fit with working principles of a circular bioeconomy? A case of 
Finnish and Swedish initiatives, Forest Policy and Economics, 110, 10189.  
 
Tuquerres Curipallo, H., Cerda Mejía, G., Tenemasa, V., Diéguez Santana, K., Carrera Sánchez, K., Pérez Martínez, 
A. (2020). Diseño del proceso para la obtención de ácido cítrico a partir del bagazo de caña disponible en Pastaza, 
Ecuador. Centro Azúcar, 47(2), 86–96. 
 
Vallejos, M. E., Felissia, F. E., Kruyeniski, J., Area, M. C. (2015). Kinetic study of the extraction of hemicellulosic 
carbohydrates from sugarcane bagasse by hot water treatment. Industrial Crops and Products, 67, 1–6. 
 
Vallejos, M. E., Zambon, M. D., Área, M. C., da Silva Curvelo, A. A. (2015). Low liquid-solid ratio fractionation of 
sugarcane bagasse by hot water autohydrolysisand organosolv delignification.  Industrial Crops and Products, 65, 
349–353.