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ABSTRACT

The object of the present paper is to discuss certain conver-
gence properties of the Lambert transform and to develop an inver-
sion technique . The properties given here are necessary in the ap-
plication of this transform to integral equations, differential equa-
tions and methods of analytic continuation of power series.

RESUMEN

El objeto de este trabajo es discutir algunas propiedades de
convergencia de la transformada de Lambert, y desarrollar una técni-
ca de inversion. Las propiedades dadas son necesarias para la apli-
cacibén de esta transformada a ecuaciones diferenciales , ecuaciones
integrales y los métodos de continuacidon analitica de series de po-

tencias.
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1. INTRODUCTION

In this paper certain convergence properties of the Lambert
transform are discussed and an inversion technique is developed. The
convergence properties discussed herein are essential in the deter-
mination of the analyticity of the Lambert transform and these prop-
erties are necessary in the application of the transform to integral
equations, differential equations, or methods of analytic continua-

tion of power series.
If we denote the Lambert transform of F(Z) by

ieFLe)) - [ ot Pt e = glo
o ¢ -

for those values of 4 for which the integral converges , the follow-
ing can easily be verified using tables of integral transforms or by

Writin.g I — = z Q—Mt .
n=1

eé”t-l

IM{£*} = F(a+2]a+§1(a+2) ,Res>0,Ra>-1, (1:1)

4
where Tlz) is the gamma function and ¢(z) is the Riemann zeta func-

tion defined as
¥ 1
glz) = —
k.zl k*

It can be observed once the convergence properties have been
established that the Lambert transform will exist for the class of
functions € having the property that F e § implies F(z) has the ex-

pansion F(z) = N a“z)‘n,where “1RA RN Cvee
n=9

is an increasing



w9

sequence of real mumbers with An—>+ o as pn—>« and the series for F

has a non-zero radius of convergence.

2, CONVERGENCE OF THE LAMBERT TRANSFORM

Goldberg [4] proved that if the transform

Flx) = [ Klx,2) d alt), «x real, (2.1
o+

K(x,t) = § a, e
k=1

“hxt for fairly general class of sequences {ah} .

converges for some x > 0 and if a, = 0(K"") for some >0, as
h—>e , and

f+1
o X

1
J la(2) | dt < @
then the transform (2.1) converges for all x > x . This result will
be extended in this section.
In discussing convergence it can be seen that the Lambert trans-
form of the function §(£) = £ , £ >0, fails to exist due to the
behavior of the function as £->0 . However , the Lambert transform

e
s 2 ; 2, \? 2
of G(¢) =t °, > 0, exists and has the value IM{t }= ———=~

N |

4
provided Re 4 > 0. In fact, convergence of the transform at thelower

limit is assured for F(t) if tl—aF(/t) >0 as £t—>0 for some §e (0,1).
An equivalent way of assuring convergence at the lower limit of the
transform, as is common in the discussion of convergence of the
Laplace transform, is to restrict our class of functions to those

8)
functions F(#] such that [ |F(£)]|dt is convergent with respect to
i
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the lower 1limit.

THEOREM 2.1 1§ the Lambert Ainteghral

Y
LICF(£)} = L - e (2.2)

L8 convergent for s = 4, with Re 8, > 0, then the integral is con-
vergent for all & with Re & >Re s,.

Proof:  First we consider the integral (2.2) with respect to

its lower limit. Since we are considering functions F(£) such that

b
J |F(£)|dt converges with respect to the lower limit , then given

0 .
e > 0, there is a § >0 such that for all 61,62 with 0 < 8, < §, <6,

62
f IFle)|dt < e/2 .

1

It can be shown that for all 4 with Re 4 # 0
2im . At
t—>0 eét_l

This implies the existance of a real number 4 > 0 such that for all
te (0,n),

<2 .

l st
At

Hence, if 0 < § < §, < min (8,1), we have

V&

Kgaz Qgi-\ F(z:]dztk igzzk—ff_‘“ﬂﬂw <
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62
<7 J |F(t)|dt < €

1

which implies convergence at the lower limit of (2.2) for all 4 with
Re 4 # 0, and in particular for Re 4 > Re 4.

In consideration of the upper limit , suppose LM{F(t)} is con-
vergent for 4 = s, and set

o AL
Rlx) - L?—:}—] Fle)dt 2.3)

so that |R(x)| can be made arbitrarily small by choosing x suffi-
ciently large. We also have, for almost all x,

on |
R'(x) = - Fix) .
30X g
Now consider for w > x,
w w 5,1t A
st 5(e”0"-1) 0
S piglde - f Flt)dt
[x At X AOIQAI—I) S0t
w 4,4
-2 [T riat
A x e -1

5oL w
J jf Fle)dt = - 2 & 112(12)‘
x e -} 8y & =1 X




s dit i) - 5 0T gy
s, %1 5y W1

x &1 x  4,(¢ -1)*

By hypothesis we assume Re 8, > 0 so that for an arbitrary but fixed
4 with Re 4 > Re s, > 0 we have

o= & eA»t_, - 5, > eﬁe 61'.'_1 4

which implies that we can find a real number x, such that for all
o g
l,

4 eA°t~1

8, e“t-r

<1,

Since |R(£)| can be made arbitrarily small by choosing £ suffi-

ciently large, then for all £ larger than some number x, > x, we
have

< |R(2)] < % " (2.5)

Also for 4 fixed with Re & > Re 4, > 0, it is possible to find
a real number n > 0 such that Re 4 > Re 4, +n. Thus we can write

6e50't| 6e(éo+nlil —nt
= e
e‘%-1| 51 |

and
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Lin  |sel80nlt < 1s| ein oRelsonlt
toe [T B e T

?

.1l Re(s,+n) t!i"_i"m ghele-synit

since Re 4 >Re 4, > 0 and Re(s-8 -n) > 0. It is then possible to
find a real number x, sufficiently large so that for all £ > X, we

have the following inequalities;

(8,#n)%
%A—"fT_ <1, |R(2)] <54'l.
Thus forallxandwwithx3 <X <w,
w 4.1 w (8 +n)t
520 4070 -t
—7— Rltldt <f |R(2)| e dt
Lc %=1 T g

(2.6)

Again considering 4 arbitrary but fixed with Re 4 > Re 5, > 0
we choose n > 0 such that Re 4 > Re 4, + n. Then

8238 30%n)| | fE ] [a2 o0y
AO(QAt-”z aA:E-I s, e‘sf-l
] |srietota e R
-7 | g (e850) |

(2.7
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and we may write

42(¢A°t-1)e”t| _ (42 it 2ot |

sy 080 | s, M (et
3 Aze(“o”‘)tl , 52" | (2.8)
= I¥i I¥i ' '
s 100 | s, 1))
However,
Lim éf_e(‘°+“)t |83 em Rels it
B 4, St | T 8, t=o Re 8z
2| Relsq+n) ,- _ s
< %) 0 tfﬁnm oRels-54 nlt _ 0,
4,' Res

since Re(A-Ao-n) > 0, and we also have

Lim (,_nt

42 Qnt
&
t—>w QRe Z_,

~ 8T .| =

s, ¢ -1

A2

4

Lim

t—>e

0

n tﬂﬁnm o Rels-nlt _
Re

60
since Re 4 > Re 4, + n implies Re(4-n) > Re 4, > 0. Also

1

——

1-¢7%%

o Aim 1
—L>w ,_Q-ﬁe ¥

Lim
L—>

since Re &4 > 0, Accordingly we may find an X, sufficiently large so


http:l_e.-.6t
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that each of the following inequalities is valid for all £ > x;

éie(A:Hl:t g e (2.9)
60 e -

2 e

6_%_1 <, (2.10)
60 g =

"1’-52 <1, (2.11)
I-¢

Ribl < (2.12)

Thus , applying (2.9) and (2.10) to (2.8) and this result along with
(2.11) to (2.7),, we may conclude that for s fixed with Re 4 >Re 4, >0
and choosing n > 0 such that Re 4 > Re s, M, then for all £ > X,
we have

h“( oty nt

Au( o] 1® |<e, ’

so that using this result and that of (2.12) , then for all x and w
with X, <x<uw,

At( 6gt )
S |R(£) |dt

f s2e* (oo '”R(t)dr.
X A(ét 1)?

<J. [

<§ﬂ[we-ntd,t<§ﬂ Iwg_ntd,tzg :
X 4 " 4

s, (e

(2.13)
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Hence , taking the absolute value on both sides of (2.4) , using the
triangle inequality on the right-hand side and refering to (2.5) ,
(2.6) and (2.13) we can conclude that given 4, arbitrary but fixed,
with Re s >Re 4, >0, and given € >0 we can find a K = max (xz,xs,xq)
so that for all x and w with K < x < w,

This concludes the proof of the theorem.

It can be noted that if we restrict 4 to a bounded region B
properly contained in the region Re (é-éu) > (0 we can arrive at in-
equalities independent of any 4 €B. This leads to the following the-

orem.

THEOREM 2.2 1f the Lambert integral

wiFle)) = [ S Fielae
e -1

0

45 convergent at & = 5 where Re 4, > 0, then for an arbitrany real
number n > 0 the Lambert integhal i85 uniformly convergent throughout
any bounded region contained in the half plane Re (4 -Ao) >n > 0.

3. AN INVERSION FORMULA

We now state as a lemma a Cauchy integral type formula that
will be used to develop an inversion technique which is very useful
for a certain class of functions. This lemma will be proved for com-
pleteness.
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© q
LEWA 3.1 Let {(z) be of the form §(z) = ] —% , converging
n=1 z
for complex z with |z| > R >0, the a being constants. Then, Letting

C denote the cinele z = p e‘e, p>R, 0<86<1n the formula

1 §(z) )
= i T dz = §(a) (3.1)

A5 valid for all complex values a with |a| > p > R,

Proof:  The integral in (3.1) 15 familiar in the derivationof

Laurent series . Here we evaluate the integral by making the substi-
tution z = % , which yields

' f fizl gy o1, 1 J 1) a, (3.2)

2nd - a f = ik
4 5 a-z ZMC:w -

where glw) = % 6(‘1)—) =a +aw+ ..., which by hypothes%sfewill cc;n—
verge for |w| < %2- = #, and where ¢ is the circlew = z e W,on = = o
0 <9 <2r. Now, applying the Cauchy integral formula , we have,

since {i is interior to ¢,

I [ g(w) dw:g%) = Bl (3.3)

Substituting the result of (3.3) into (3.2) we have

1 J 82 4, - L [a §la)] = §la),
a

24 a - z
d

(I desired TCSuLL,
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We will now develop an inversion formula for the Lambert trans-
form which is accomplished by use of the Residue Theorem.

THEOREM 3.1 If

§ls) = Jo a—jt%r(tldt (3.4)

ad 4f the genenating function can be weitten in the fomm

8

a

- 181 >R,

§(s) =

n

o~

o

1

The integhal in (3.4) converging for at Least Re 5 > p, with p > R,
then, Letting

© n
n=o0 T'(n+?) z(n+2)

and ¢ be the curve z = 1 e‘s, 0 <6< 2m n>p, we have

Flt) = me §lz) dz
2md A

= - Res ¢(zt) §lz). (3:5)

Z =

Proof: Using the function ¢ and 4§ and the curve ¢ described
in the hypothesis, we consider

f _fgl; qu_ f olzt) §(z) dz] dt. (3.6)
0o ¢ -

24
c
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For fixed 4 in the region A = {4 : Re 4 # 0}, let

Glz,t) = Kls,2) ¢(zt) §(z),

where as always K(4,%) = —:5-"— , 0 <t<w, and K(5,0) = 1. We note
e -

that for each fixed £, 0 < £ < », the function G(z,%) will be con-
tinuous with respect to z along the curve c since ¢(zt) is an entire
function and §(z) is analytic for |z| = 2~ > R. For each fixed z on
¢, the function G(z,t) is continuous with respect to £ on any inter-

val [a,b] , 0 <a<b<m, since ¢(zt) is entire and K(s,t) is con-
tinuous with respect to £. Also, we have

® st ® st v (zt)"
£ slzt) fl2) dt - glz) | d.
Io Chgy | ' 0 PE ngo (n+1)! z(n+2)
(3.7)
w n
Now the series ¢(zt) = ] £ is entire in zt and hence

n=o0 (n+1)! ¢(n+2)
is uniformly convergent as regards £ in the interval 0 <f<w, w<e .

Hence,

w oo n ) n w
J Abtt 2 (Z»t) dt = Z Z I bbﬁt tn dt.
o e =1 n=o0 (n+1)! (n+2) n=o0 (n+1)! ¢(n+2) 75 -1

But the series on the right is shown to be uniformly convergent as
regards w as follows:

and if Re & > 0, |e3%-
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W +1 u +1 - +
8] £ 2 £
Io dat< lAI Io ZWT d«t< léljo mdf @

This last integral converges since in the hypothesis we have assumed
Res>p>R>0,

We can therefore let w—>«, and provided z satisfies |z| <|4],
we arrive at

T3 5 (zt)" 3 2" st
f T L , dt = ] , J ot dt
0 ¢ =1 n=0 (n+1)! z{n+2) n=0 (n+1)! g(nt2) 7o -1

_m 2" _ 1

ngn s s - 2

Thus we can conclude that for any & > I, the integral of (3.7)

converges uniformly to 4z for z on ¢ and 4 in the region
4 -z
Ag = {8 : Re s >0, |8 > 8[z]].
The conditions just discussed are precisely the conditions in
the hypothesis of Weierstrass's Theorem [7, p. 97] on interchanging
the order of integration . Thus, interchanging the order of integra-

tion in (3.6)

[ L [ etz glzidgee - L | g £ olztdd]dz
0 e -

A Zm,c Zméc
o of Jﬁtz]dz
Zm.cb-z

provided |4| > |z| = ». However, for |4| > & > R, the conditions of
Lemma 1 are satisfied and we can conclude that for all swith Re 4 >
this last integral has the desired value of §(4). It is then evident

that if {(s] satisfies the hypothesis of the theorem, then for al-
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most all £ with 0 < £ < =,

*

Fle) - f olzt) §lz)dz .
1L £

We note that since 4 > R then all finite singularities of {(s) are

interior to ¢ and according to a consequence of the Residue Theorem,
for almost all £, 0 < £ < «,

Fit) = L [wzﬁ {l2) dz = - Res olet) {l2)

Ind 4 Z=zo

since ¢(z£) is an entire function, and the theorem is proved.

The previous theorem furnishes a convenient means of establish-
ing the following formula.

COROLLARY 3.1 If the function §(4) can be represented in a
sendies of the fonm

© a

fls) = —,
nzu P

convernging for |4| > a > 0, a < =, then the determining function
Flt) = LM {418}

can be computed through team by term inversion. That 48,

@ a tn
n
1

Fie) = § o i (=12 - '
n=0 4 n=o0 (n+1)! z(n+2)

this sernies gon F(t) converging forn all £.
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Proof: If §(4) has the form given in the hypothesis ,

from Theorem 3.1 we have

Flt] = - Res ¢(zt) §lz),
2 =®

x

where ¢(zt) - (2¢)"
ere ¢ (zt ) . However, - Res ¢(zt) §(z) =

n=0 (n"',)’ C(I’l*z, Z=®

R&'7¢F)M4

Z=0 7

tk o v+l
-—-¢(-J 6(-4 = — a z
& k§0 (k1) ¢lket) 2" ug Y

it

ko (k1) g(k+2) 22 veo

The coefficient of Lin the resulting Laurent series is
Z

o a2

n=o (n+1)! cin+2) |

then

which proves that F(£) can be represented by the desired series .

The convergence of this series for F(t) for all % is evident since

by hypothesis the series ) a, W™ has a non-zero radius of con-

n=0

vergence.

As an example consider the function {(s) = =
§(s) about s = 0, we have
1 1 1 R
e e i
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converging for |4| > |a|. Then

| E’ at

Flg) = I =) =
0 p2e (n#1)! glnel)
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