
Análisis de cavitación en turbinas helicoidales Gorlov.                                                                                     99 
 
Rev. Téc. Ing. Univ. Zulia. Vol. 45, No. 2, Mayo - Agosto, 2022. 
 
Molina, A. C., Massai, T., Balduzzi, F., Bianchini, A., Ferrara, G., De Troyer, T., Bartoli, G. (2018).  Combined 
experimental and numerical study on the near wake of a Darrieus VAWT under turbulent flows. Journal of Physics, 
1037(7), 072052. 
Molland,  A.  F.,  Bahaj,  A. S.,  Chaplin, J.  R.,  Batten,  W.  M. J.  (2004).  Measurements  and  predictions  of  forces, 
pressures  and  cavitation  on  2-D  sections  suitable  for  marine  current  turbines.  Proceedings  of  the  Institution  of 
Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 218(2), 127-138.  
Murray, R. (2017).  Predicting cavitation  on  marine and hydrokinetic turbine blades with  AeroDyn  V15.  04. No. 
NREL/TP-5000-68398. Golden, CO. United States: National Renewable Energy Lab. (NREL). 
Nedyalkov,  I.,  Wosnik,  M.  (2013).  Cavitation  investigation  of  hydrofoils  for  marine  hydrokinetic  turbines. 
Proceedings  of  the  ASME  2013  Fluids  Engineering  Division  Summer  Meeting.  Nevada:  American  Society  of 
Mechanical Engineers Digital Collection, 1-11.  
Niblick,  A.  L.  (2012).  Experimental  and  analytical  study  of  helical  cross-flow  turbines  for  a  tidal  micropower 
generation system. Master’s thesis. Washington: University of Washington. 
Pineda-Ortiz, J. C., Chica-Arrieta, E. L. (2020). Métodos numéricos para el desarrollo de una turbina hidrocinética 
tipo Gorlov. Revista UIS Ingenierías, 19(3), 187-206. 
Pope, S. (2000). Turbulent flows. Cambridge: University Press.  
Riglin, J., Daskiran, C., Jonas, J., Schleicher, W. C., Oztekin, A. (2016). Hydrokinetic turbine array characteristics 
for river applications and spatially restricted flows. Renewable Energy, 97, 274-283. 
Saini, G., Saini, R. P. (2019). A review on technology, configurations, and performance of crossflow hydrokinetic 
turbines. International Journal of Energy Research, 43(13), 6639-6679.  
Satrio, D., Utama, I.,  K. A. Pria, K. A., Mukhtasor (2018). The influence of time step setting on the CFD simulation 
result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12(1), 3399-3409. 
Satrio, D., Utama, I., Pria, K. A., y Mukhtasor. (2018). The influence of time step setting on the CFD simulation 
result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12(1), 3399-3409. 
Shinomiya, L. D., Vaz, J. R. P., Mesquita, A. L. A., de Oliveira, T. F., Brasil Jr, A. C. P., Silva, P. A. S. F. (2015). 
An approach for the optimum hydrodynamic design of hydrokinetic turbine blades. Revista de Engenharia Térmica, 
14(2), 43-46.  
Shiono, M., Suzuki, K., Kiho, S. (2002). Output characteristics of Darrieus water turbine with helical blades for 
tidal  current  generations.  The  Twelfth  International  Offshore  and  Polar  Engineering  Conference.  Kitakyushu: 
International Society of Offshore and Polar Engineers, 859-864. 
Silva, P. A. S. F., Shinomiya, L. D., de Oliveira, T. F., Vaz, J. R. P., Mesquita, A. L. A., Junior, A. C. P. B. (2017).  
Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM.  Applied Energy, 185, 1281-
1291.  
Oberkampf, W. L., Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in 
Aerospace Sciences, 38(3), 209-272. 
Wilcox, D. (1993). Turbulence modeling for CFD. La Cañada, California: DCW Industries.