ppi 201502ZU4659
Esta publicación cientíca en formato digital es
continuidad de la revista impresa
ISSN 0254-0770 / Depósito legal pp 197802ZU38
UNIVERSIDAD DEL ZULIA
Una Revista Internacional Arbitrada
que está indizada en las publicaciones
de referencia y comentarios:
• SCOPUS
• Compendex
• Chemical Abstracts
• Metal Abstracts
• World Aluminium Abstracts
• Mathematical Reviews
• Petroleum Abstracts
• Current Mathematical Publications
• MathSci
• Revencyt
• Materials Information
• Periódica
• Actualidad Iberoamericana
DE LA FACULTAD DE INGENIERÍA
REVISTA TÉCNICAREVISTA TÉCNICA
Patrimonio del Estado Zulia e
interés Cultural desde 2001
Fecha de Construcción:
1954-1958
Diseño: Arquitecto Carlos Raúl
Villanueva, con elementos
novedosos de adaptación
climática.
Policromía de la obra: Artista
Zuliano Victor Valera.
VOL.42 MAYO - AGOSTO 2019 No.2
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, 64-72


K. Espinoza1, C. Fernández1, J. Pérez1 , D. Benalcazar1, D. Romero1, B. Lapo1*
1Laboratorio de Investigaciones, Grupo BIOeng, Carrera de Ingeniería Química, UACQS, Universidad Técnica de Machala,
Machala, 070151, Ecuador
*Autor de Contacto: blapo@utmachala.edu.ec
https://doi.org/10.22209/rt.v42n2a03
Recepción: 03/10/2017 | Aceptación: 20/02/2019 | Publicación: 01/05/2019


treat domestic wastewater were assessed. The plastic wastes evaluated were: low density polyethylene (LDPE), polyethylene
terephthalate (PET) and high-density polyethylene (HDPE). Three reactors of 12 L were assembled and operated for 182
days divided into three phases of 90 days each, where the volumetric organic loading was varied between 1.6 to 3.5 kg COD
m-3 dia-1
electron microscopy was used to observe the plastic surface before and after the biomass adhesion. In addition, chemical
                
biomass formation over the materials respectively. COD removals over 80% was achieved for m-LDPE and PET, meanwhile






Se determinó la posibilidad de aplicación de residuos sólidos plásticos en el tratamiento de aguas residuales. Se evaluó
el uso de tres tipos de residuos sólidos plásticos: polietileno de baja densidad (LDPE), polietileno tereftalato (PET) y
                 
aguas residuales domésticas, a escala de laboratorio. Fueron montados tres reactores de 12 L, y se operaron durante 182
días divididos en tres fases de 90 días, donde la carga orgánica volumétrica se varió entre 1.6 y 3.5 kg DQO m-3 dia-1. Para
  
térmicamente (m-LDPE). Se utilizó microscopía electrónica de barrido para evaluar la morfología y formación de biomasa

y sólidos suspendidos volátiles adheridos en los materiales de soporte, para conocer la eliminación de materia orgánica y la

                 

del material.

Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
65Plasticwastes in wastewatertreatment


local connotation due to its large amounts delivered to the
environment and low bio-degradability. Ecuador, is one of

high quantities of plastic bags or low-density polyethylene
(LDPE) are discarded, since these plastics serve to protect


S.A., consumes 6000 plastic bags for the protection of
banana fruit, which are mainly LDPE. Besides, plastic
bottles such as polyethylene terephthalate (PET) and
high-density polyethylene (HDPE) are also the high waste
plastics discarded in urbanized areas.
On the other hand, most of the populations in non-

wastewater treatment systems, mainly because to the
lack of low-cost technologies. The developing of cheap
and easy-to-operate wastewater treatment methods are
crucial in order to surpass the low economies issues and
maintain the sanitation. Among the most used methods
to wastewater treatment are biological processes, as they
are economically viable compared to other processes such
     [2–6]i.e. vehicle
operating costs and speeds are also allowed to vary over
time. The multiple period models presented here allow
some of the optimized system characteristics (e.g. route
     
increasingly used for biological processes because they
       
         
        
systems are the support materials used, which must
provide the necessary characteristics to produce and
accumulate large quantities of bacteria to digest the
organic load supplied quickly. To this end, various support
media have been tested and developed on an industrial
       
      
Technologies Corp, among others.
     
by several processes, including the adsorption and
desorption of microorganisms on the solid surface,
       
      
 
      
      
of biomass present in a stable form are essential [10]. It
is possible that high density discarded plastics such as
PET or HDPE, and/or LDPE may be used as support for
        
        
the case of LDPE, it does not have the features need to be
immersed in the water, however, due to its thermoplastic
         
more density and roughness need to immersion into the
    
directly associated with the surface roughness and surface
tension in polymeric biomaterials [11]. Besides, most of
the studies indicate that it is necessary to maintain the
control and monitoring the operating parameters such as
hydraulic and organic loading, since depending on them,
a suspended biomass control will have to be carried out
[12].
The present project seeks to know the application
        
support in aerobic biological reactors, as these materials
are the most common plastic wastes found in the south of
Ecuador, furthermore, to apply the LDPE, it was thermally

roughness. According to this, this research is looking for
study of the optimum operational parameters to treat
domestic wastewater using these wastes.


To choose the support materials, a previous
inquiry was carried out in the city of Machala-Ecuador,
which consisted in visiting the recycling centers four
         
of plastics are the most common. One collection of the
recycled materials was done after to the survey data
        
materials match different criteria as high density, high
surface area, and low percentage of occupied volume by
the material in the reactor. The support media selected
for the study were as follows: PET (bottles of carbonated
and non-carbonated beverages for human consumption),
HDPE (bottles of disinfectants) and LDPE (plastic bags for
ripening bananas discarded).

In the case of LDPE, it was necessary to increase
the density, as the LDPE cannot be immersed in the water.
         
as well as to improve the surface characteristics. The

on the materials [10,13,14]. The thermal treatment
         
15 minutes in a stove. The new material is this paper is
named m-LDPE.
The Table 1 shows the physical characteristics of the
support means used whose data was taken from the bib-
liography.
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
66 Espinoza y col.
 Physical characteristics of the carrier materials
Feature units PET HDPE LDPE
Supercial area m2 m-3, 1.43 0.26 -
Tensile strength MPa 55 32 10
Volume occupied by
the material in the
reactor
% 60 60 60
Density Kg m-3 0.85 0.95 0.92

Three reactors made on acrylic material of total
capacity of 12 L were used. The assembly of the reactors

.
Real domestic wastewater from Machala-
Ecuador was used, this was collected from a gutter which
conduce the urban wastewater to the sea. Prior to feed

sedimentation in a 200 L volume tank. The water used had
the following physical chemical characteristics detailed in
Table 2.
 Characteristics of domestic wastewater
characteristics units value Standard
deviation
Temperature °C 23.2 -
pH - 7.11 -
COD mg L-1 627 100.97
DBO5mg L-1 237 47.23
SSV mg L-1 314.4 125.26
NTK mg L-1 31 -
N-NH4+: mg L-1 3.01 -
Pmg L-1 6.66 -
n= 27

The reactors were operated in continuous. The du-

of 60 days, where was varied the organic volumetric load
(LV) in 1.6, 2.4 and 3.5 kg COD m3 d-1 in phase 1, phase 2

         
       
biomass in the support media. The pH and temperature
throughout the process were constant. The Table 3 shows
the operational parameters used.
 Operating parameters in the system
`UNITS PHASE 1 PHASE 2 PHASE 3
Duration Day 60 60 60
Lvkg COD m-3 d-1 1.6 2.4 3.5
HRT h9.6±0.23 6.8±0.36 5.0±0.26
Flow L h-1 1.2±0.03 1.8±0.09 2.4±0.13
Before the reactors were started, it took around
30 days to achieve good bacterial growth in the support
media which was operated with a volumetric load of 1.6
kg COD m-3 d-1.

Measurements of the parameters listed in Table 4
were done in the feeding wastewater, meanwhile, CODs,
pH and temperature were monitored at the outlet of the
reactors. Besides, biomass detachment was monitored
weekly by the analysis of SSV (mg SSV L-1   
liquor, according to [15]. Analyzes of BOD5, nitrogen and
total phosphorus were done at the beginning and inter-
mediate periods of the study to corroborate the COD:BOD5
and COD:N:P ratios.
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
67Plasticwastes in wastewatertreatment
 Parameters and measurement techniques
Parameter Units Method
Temperature °C Thermometric
pH - 4500-H / PH / [16]
CODs mgL-1 5220 / COD/[16]
DBO5 mgL-1 5210 / BOD5 / [16]
SSV mgL-1 [17]
NmgL-1 5220 / NT/ [16]
N-NH4+ mgL-1
4500-N / N-NH4 /
[16,18]
PmgL-1
4500-P /phosphorous /
[16,18]
SST mgL-1 [17]
Material surface and biomass growth was

       
the samples were dehydratated in a stove for 24 hours at
         
and sputter with carbon, the SEM conditions were 5kV
and 10-5 torr in a sample holder provided with charge
reductor.
In the case of biomass growth on the support
materials, it was measured through the SSV adhered in
the materials [15,19]. This value was obtained using the


reactors, then the materials were washed with deionized
water, ultrasonicated for 30 min, procuring remove and
transfer all the organic matter from the material to the
         


(g SSV m-2).


After the survey done to recycler stations, it was
found that, the major of wastes correspond to banana
bags with 42.8 %, followed by PET with 29.7%, HDPE
with 21.1% and others with 6.4%. The plastic bottles and
the containers of drums have a low recycling percentage,
these come mainly from the plastic bottles and beverage
containers. Regarding to the kind and quantity of plastic
wastes found in recycling stations, LDPE plastic was the

       
delivered tons on LDPE, as this material is used along
all the banana farms to protect the fruits from biocides.
Regarding to the other plastic wastes, the values found
could be compared with other similar recyclers in the
country [21,22].

The biomass growth was measured as the total
amount of SSV on the materials, moreover the material
surfaces were observed by SEM.
Regarding to SSV formation on the surfaces, the
Figure 2 shows the amount of SSV attached to biomass.
In Figure 2 is possible to observe the amount of
biomass formed by surface area. The material m-LDPE
can accumulate around 2 g of SSV m-2, meanwhile PET and
HDPE retain on the surface 1.02 and 0.25 g m-2 respective-
ly. It is to say that m-LDPE showed around twice adhesion
than PET, and eight times more than HDPE.

evaluations, which is showed in Figure 3. The microphoto-
graphs allow to observe the morphology of the materials.
-
        

m-LDPE, where it can be observed the high roughness
achieved after the treatment, which favors the adhesion


The Figure 3 shows SEM microphotographs,
where biomass adherence is observed in each support

Biomass growth on material
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
68 Espinoza y col.


The 3(c) photo shows the biomass formed in this
same support media after 30 days from the initial inocula-
tion. In Figure 3(d) and 3(f) it is observed the materials
PET and HDPE respectively, before the biomass attach-
ment, in the same way 3(e) and 3(g) show the attached
biomass in PET and HDPE respectively, where it is showed
low amounts of adhered biomass.
On the other hand, the concentration of SSV

phases is showed in Figure 4.
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
69Plasticwastes in wastewatertreatment
020 40 60 80 100 120 140 160 180 200 220 240
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
Phase 3
Phase 2
Phase 1
m-LDPE
PET
HDPE
VSS(mg L
-1
))
Time(day)


According to the Figure 4, during the phase 1,
the SSV concentration in m-LDPE, PET and HDPE reactors
show a constant increment from around 300 mg L-1 to 590
mg L-1, then in phase 2 it is observed a relative stabiliza-
tion in PET and m-LDPE reactors with SSV concentration
around 550 mg L-1, however the SSV in HDPE reactors go
on growing to arise 782 mg L-1-
-
ing to 1000 mg L-1-
centration remains constant in around 550 mg L-1, while
 
in SSV values from 612 mg L-1 to 660 mg L-1.
Regarding to SSV attached to the materials. The
quantity of biomass was measured by the amount of SSV
by area. This trend is directly correlated with the surface
morphology, which is higher in m-LDPE than the other
materials assessed. The decreasing roughness is present-
ed as follow: m-LDPE>PET>HDPE, this trend corresponds
with the amount of SSV found, which were 2.09 g L-1, 1.02
g L-1 and 0.25 g L-1 to m-LDPE, PET and HDPE respectively.

the adhesion. The attachment will occurs most readily in
rougher, hydrophobic and coated by surface-conditioning
       -

reactors (MBBR1 and MBBR2 , who found a direct rela-
tionship between the cell adhesion with the surface prop-
erties. On the other hand, the materials evaluated, particu-
larly the m-LDPE could be compared with other materials
as polypropylene, which could attach 1.35 g m-2 of SSV
[20].
According to morphology surface observations
done by SEM in Figure 3.a and 3.b, it is possible to observe
the differences in the surface between LDPE with and

roughness was achieved in m-LDPE (3.b), it favors the

        
       
than smooth surfaces. Also, the observations in the other
materials 3(d) and 3(f) PET and HDPE respectively without



       
is produced. Many factors are involved in the adherence
mechanism, including electrostatic forces, contact angle,
       

reactor (AFBR), especially because the material provides

and relatively low pressure drop. In the present research,
          
that the microbial attachment was improved as long as the
material is more roughness.
Biomass is directly correlated with SSV

showed in Figure 4 demonstrate that m-LDPE and PET
are more stable in terms of SSV release, meanwhile HDPE
showed less stability, it is mainly because the low surface
roughness, which do not let to attach the biomass stronger.
It happened particularly when the organic loading
increase, to this study, the equilibrium was achieved to
organic loading of 2.4 to 3.5 kg COD m-3 d-1 to m-LDPE and
PET, however the HDPE could not maintain attached the
biomass to these applied loadings.

-

5.a) and 5.b).
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
70 Espinoza y col.
-
a) -
ciency of COD removal vs. time


     -1 to 383.53 mg
L-1. Meanwhile, in the case of m-LDPE and PET the COD
concentration decrease similarly from 519 mg L-1 to 200
mg L-1 around. During the phase 2 and 3 all of them remain
 
L-1-1, m-LDPE also

mg L-1.
-
tors versus time. Throughout the phase 1 the COD removal
increase from 30% to up to 42% for HPDE, and reach 65%
and 74% for PET and m-LDPE respectively. It was ana-
lyzed that the m-LDPE and PET materials achieved higher
 

The COD removal in Figure 5.a) showed the mini-
mum COD concentration achieved using the plastic mate-
rials, the equilibrium presented in phase 2 and 3 for PET
and m-LDPE is mainly because these materials retain bet-
ter the organic matter, in accord to the material charac-
         
directly proportional to the organic matter removal. In
-
salination Publications. All rights reserved.Abstract: The
operational performance of the sequencing batch reactor
(SBR, showed that in SBR reactors handling the 60% of
volume occupied by kaldnes support materials, they ob-
tained 94.2% of COD elimination. The use of marine shell
to treat of wastewater from artisanal mills gives 84.4% re-

kg COD m-3 and 26 h of hydraulic retention time [27], were
       
-
sity and chemical composition being important character-
istics in the development of the microorganism.

medium using PET bottles [21]ha sido utilizado en mu-
chas partes del mundo con diferentes sistemas de dep-
uración de contaminantes. Sin em -bargo se ha compro-
bado que muchos de estos contaminantes representan un
peligro para la salud del hombre y seres vivos. Debido a lo
anterior el objetivo de esta investigación fue implementar
un reactor biológico rec-tangular de 90 litros de capacid-
ad, aireado y conteniendo en su interior botellas plásticas
de pet (polietileno tereftalato, the materials was proved
          
similar value of 80% than in the present research. In the
case of some recyclable plastic materials in the treatment
of wastewater [30], these authors determined that the
polymer PUR and Icopor (Polyester PS) obtained better
performance in the removal of organic load from the 80%,
using gravel as a target in biological treatment.
    
(MBBR1 and MBBR2, stipulate that the use of conventional

organic load from 0.8 to 3.2 kg COD m-3 d-1, increased the
concentration of biomass in the carrier material. Accord-

materials which could be suitable for the packing of the
       


The three-support media evaluated PET, HDPE
and m-LDPE contributed for the development and growth
  
the use of PET and m-LDPE. The materials m-LDPE and
PET evaluated in the reactors, achieved high removal of

material compared with HDPE, which can be concluded that
these polymers are effective for use as carrier materials at
the operational conditions applied (1.6 to 3.5 kg COD m-3
d-1). The reactors with HDPE plastic waste, obtained the
lowest organic matter removal, due to its smooth surface,

to detach, and increase the amount of sludge, gradually
       
plastic is not advisable as a support in this kind of system.
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
71Plasticwastes in wastewatertreatment

      
Técnica de Machala, mediante proyecto de investigación
aprobado por el H.C.U. Nº 294/2017.

[1] Ministerio de Agricultura Ganadería Acuacultura y
Pesca: “La política agropecuaria ecuatoriana”. Quito,
(2016).
[2] Shyue K. and Schonfeld P. M.: “Multiple period
optimization of bus transit systems”. Transp. Res.
Part B Vol. 25 (6) (1991) 453–478.
[3]       
Zambrano J. A. and Sastre A. M.: “Sorption of boron
on calcium alginate gel beads”. React. Funct. Polym.
Vol. 73 (4) (2013) 653–657.
[4] Rinaudo M.: “Biomaterials based on a natural
polysaccharide: alginate”. Rev. Espec. en Ciencias
Químico-Biológicas Vol. 17 (1) (2014) 92–96.
[5] Lapo B., Demey H., Zapata J., Romero C. and Sastre A.
M.: “Sorption of Hg (II) and Pb (II) ions on chitosan-
iron (iii) from aqueous solutions: single and binary
systems”. Polymers (Basel). Vol. 10 (367) (2018).
[6] Demey H., Lapo B., Ruiz M., Fortuny A., Marchand M.
and Sastre A.: “Neodymium recovery by chitosan/
    
batch and column systems”. Polymers (Basel). Vol.
10 (2) (2018) 204.
[7] Boltz J. P., Morgenroth E., Brockmann D., Daigger
G. T., Henze M., Rittmann B., Sorense K., Takacs
I., Vanrolleghem P. A. and Loosdrecht M. van.:
 

[8] 
treatment”. (2011).
[9] Van Loosdrecht M. C. M., Eikelboom D., Gjaltema
        
       
35–43.
[10] Nicolella C., Van Loosdrecht M. C. M. and Heijnen J.
     
reactors”. J. Biotechnol. Vol. 80 (1) (2000) 1–33.
[11] Hallab N. J., Bundy K. J., O’Connor K., Moses R. L. and
Jacobs J. J.: “Evaluation of metallic and polymeric
biomaterial surface energy and surface roughness
characteristics for directed cell adhesion. Tissue
Eng. Vol. 7 (1) (2001) 55–71.
[12] 
           
biomass production and detachment forces on
      
reactor”. Biotechnol. Bioeng. Vol. 58 (4) (1998) 400–
407.
[13]               

by atomic force microscopy”. Ultramicroscopy Vol.
109 (8) (2009) 874–880.
[14] Ammar Y., Swailes D., Bridgens B. and Chen J.:
      
      
284 (2015) 410–416.
[15] Nava Urrego L. M., Gasperín Sanchéz R. y Durán
Moreno A.: «Comparación de un reactor de biomasa
suspendida y un reactor de biomasa adherida para

en aguas residuales de refinerías de petróleo». Rev.
Int. Contam. Ambient. Vol. 30 (1) (2014) 101–112.
[16] American Public Health Association, American
     

of water and wastewater”, 21st ed., American Public
Health Association, (2005).
[17] Tchobanoglous G., Burton F. L. and Stensel H. D.:
“wastewater engineering: treatment and reuse”,
Cuarta Edición, New Delh, India, (2003).
[18] Hach Company: “Manual de Análisis de Agua,
Loveland, (2000).
[19]        
foam and biodegradable polymer as carriers in

with a low C/N ratio. Chemosphere Vol. 83 (1)
(2011) 63–68.
[20] Lapo B., Romero H., Martínez O., García C. and Lemus
M.: “CODs removal of domestic wastewater by
    
loading rate”. Int. J. Appl. Environ. Sci. Vol. 13 (7)
(2018) 595–604.
[21] Alomía P. and Paspuel M.: «Creación de una empresa
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 2, 2019, Mayo-Agosto, pp. 47-97
72 Espinoza y col.

de desechos de cartón, papel, plástico y vidrio
en la ciudad de ibarra, provincia de Imbabura»,
Universidad Técnica del Norte, (2011).
[22] Pol E.: «factores involucrados en el manejo de
la basura doméstica por parte del ciudadano»,
Universidad de Barcelona, (2003).
[23] 
Current developments in Biotechnology and
Bioengineering. (2017) 143-175
[24] Bassin J. P., Dias I. N., Cao S. M. S., Senra E., Laranjeira
Y. and Dezotti M.: “Effect of increasing organic
loading rates on the performance of moving-bed

assessing the activity of suspended and attached
biomass fractions”. Process Saf. Environ. Prot. Vol.
100 (2016) 131–141.
[25] Aygun A., Nas B., Berktay A., Ates H.: “Application
      
of sewage wastewater treatment: effect of power

37–41.
[26] Hadjiev D., Dimitrov D., Martinov M., Sire O.:

supports by surface conditioning”. Enzyme Microb.
Technol. Vol. 40 (4) (2007) 840–848.
[27] Cárdenas Calvachi G. L., Ramos Ramos R. M.:
«evaluación de la eficiencia de reactores de lecho
fijo utilizando aguas mieles residuales de trapiches
artesanales». Cienc. e Ing. Neogranadina Vol. 19 (1)
(2009) 25–38.
[28] 
«PET Y PP usado como medios de crecimiento be
biopelícula fija aplicada al tratamiento aerobio de
aguas residuales dom   Congresso
Brasileiro de Engenharia Química, (2015), pp 6522–
6530.
[29] Mendoza M., Rodríguez J.: «Reactor aerobio como
medio de soporte fijo utilizando botellas PET». Vol.
12 (2016).
[30] Cervera J., Tavera J.: «Evaluación de algunos
materiales plásticos reciclables como medios
filtrantes para aguas residuales». (2007) 76–82.
REVISTA TECNICA
DE LA FACULTAD DE INGENIERIA
UNIVERSIDAD DEL ZULIA
www.luz.edu.ve
www.serbi.luz.edu.ve
produccioncientica.luz.edu.ve
Esta revista fue editada en formato digital y publicada
en Abril de 2019, por el Fondo Editorial Serbiluz,
Universidad del Zulia. Maracaibo-Venezuela
Vol. 42. N°2, Mayo - Agosto 2019, pp. 47 - 97__________________