
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 1, 2019, Enero-Abril, pp. 03-47
9
Comportamiento electroquímico del Triptófano (TRP)
[13]  Arvand M, Zanjanchi M.A, Islamnezhad A. “Zeolite-
     
Voltammetric Sensor for Detection of Tryptophan 
in Pharmaceutical Preparations”. Analytical Letters, 
Vol. 42(4), (2009), 727-738.
[14] Dadamos T.R.L, Teixeira M.F.S. “Electrochemical 
Sensor for Tryptophan Determination Based on 
   
Graphite Electrode”. Electrochimica Acta, Vol. 54(2), 
(2009), 4552-4558.
[15]  Guo Y, Guo S, Fang Y, Dong S. “Gold nanoparticle/
carbon nanotube hybrids as an enhanced material 
for sensitive amperometric determination of 
tryptophan”. Electrochimica Acta, Vol. 55, (2010), 
3927-3931.
[16]  Guney S, Yildiz G. “Determination of tryptophan using 
    
functionalized multi-walled carbon nanotubes”. 
Electrochimica Acta, Vol. 57, (2011), 290-296.
[17]  Liu X, Luo L, Ding Y, Ye S. “Poly-glutamic acid 
    
electrode for sensitive detection of L-tryptophan”. 
Bioelectrochemistry, Vol. 82(1), (2011), 38-45.
           
amperometric sensor for detection of tryptophan 
bases on a pristine multi-walled carbon nanotube/
graphene oxide hybrid, Analyst, Vol. 140, (2015), 
5295-5300.
 
Yola M.L. “Sensitive voltammetric sensor based 
on polyoxometalate/reduced graphene oxide 
nanomaterial: application to the simultaneous 
determination of L-tyrosine and L-tryptophan”, 
Sens. Actuator B, Vol. 233, (2016), 47-54.
[20]  Huixiang L.Y, Wang D.Y, Juan L, Biquan S, Song Z, 
Jilie K. An electrochemical sensor for simultaneous 
determination of ascorbic acid, dopamine, uric 
acid and tryptophan based on MWNTs bridged 
mesocellular graphene foam nanocomposite, 
Talanta, Vol. 127, (2014), 255-261.
[21]  Babaei A, Zendehdel M, Khalilzadeh B, Taheri A. 
“Simultaneus determination of tryptophan, uric acid 
carbon paste electrode”. Colloids Surf: Biointerfaces, 
Vol. 66, (2008), 226-232.
[22]  Fiorucci R, Gomez A, Cavalheiro E. “The use of 
carbón paste electrode in the direct voltammetric 
determination of tryptophan in pharmaceutical 
formulations”. Journal of Pharmaceutical and 
Biomedical Analysis, Vol. 28, (2001), 909-915.
[23]  A Gopalan, K Lee, K Mahnesh, P Santhosh, J Kim, J 
Kang. Electrochemical determination of dopamine 
and ascorbic acid at a novel gold nanoparticles 
  
electrode. Talanta, 71, 1774-1781 (2007).
[24]  12. D Jia, J Dai, H Yuan, L Lei, D Xiao. Selective 
detection of dopamine in the presence of uric acid 
using a gold nanoparticles-poly(luminol) hybrid 
     
   
electrode. Talanta, 85, 2344–2351 (2011).
[25]  W Cun, Y Ruo, C Yaqin, C Shihong, H Fangxin, Z 
Meihe. Simultaneous determination of ascorbic 
acid, dopamine, uric acid and tryptophan on 
gold nanoparticles/overoxidized-polyimidazole 
    
Analytica Chimica Acta, 741, 15-20 (2012).
[26]  Cai H, Xu C, He P, Fang Y. “Colloid Au-enhanced DNA 
immobilization for the electrochemical detection of 
     
510, (2001), 78-85.
            
“Amperometric inmunosensor based on layer-by-
layer assembly of gold nanoparticles and methylene 
determination of human chorionic gonadotrophin”. 
Talanta, Vol. 74, (2008), 1330-1336.
[28]  Cai H, Xu C, He P, Fang F. “Colloid Au-enhanced DNA 
immobilization for the electrochemical detection of 
     
510, (2001), 78-85.
[29]  Kinoshita K, Bett J.A.S., “Potentiodynamic analysis 
of surface oxides on carbon blacks”, Carbon, Vol. 11, 
(1973), 403–411.
 
determination of tryptophan in blood serum in the 
presence of tyrosine based on the electrochemical 
reduction of oxidation product of tryptophan 
formed in situ on graphite electrode”. Biosensor and 
Bioelectronics, Vol. 31(1), (2012), 26-31.