
Rev. Téc. Ing. Univ. Zulia. Vol. 42, No. 1, 2019, Enero-Abril, pp. 03-47
9
Comportamiento electroquímico del Triptófano (TRP)
[13] Arvand M, Zanjanchi M.A, Islamnezhad A. “Zeolite-
Voltammetric Sensor for Detection of Tryptophan
in Pharmaceutical Preparations”. Analytical Letters,
Vol. 42(4), (2009), 727-738.
[14] Dadamos T.R.L, Teixeira M.F.S. “Electrochemical
Sensor for Tryptophan Determination Based on
Graphite Electrode”. Electrochimica Acta, Vol. 54(2),
(2009), 4552-4558.
[15] Guo Y, Guo S, Fang Y, Dong S. “Gold nanoparticle/
carbon nanotube hybrids as an enhanced material
for sensitive amperometric determination of
tryptophan”. Electrochimica Acta, Vol. 55, (2010),
3927-3931.
[16] Guney S, Yildiz G. “Determination of tryptophan using
functionalized multi-walled carbon nanotubes”.
Electrochimica Acta, Vol. 57, (2011), 290-296.
[17] Liu X, Luo L, Ding Y, Ye S. “Poly-glutamic acid
electrode for sensitive detection of L-tryptophan”.
Bioelectrochemistry, Vol. 82(1), (2011), 38-45.
amperometric sensor for detection of tryptophan
bases on a pristine multi-walled carbon nanotube/
graphene oxide hybrid, Analyst, Vol. 140, (2015),
5295-5300.
Yola M.L. “Sensitive voltammetric sensor based
on polyoxometalate/reduced graphene oxide
nanomaterial: application to the simultaneous
determination of L-tyrosine and L-tryptophan”,
Sens. Actuator B, Vol. 233, (2016), 47-54.
[20] Huixiang L.Y, Wang D.Y, Juan L, Biquan S, Song Z,
Jilie K. An electrochemical sensor for simultaneous
determination of ascorbic acid, dopamine, uric
acid and tryptophan based on MWNTs bridged
mesocellular graphene foam nanocomposite,
Talanta, Vol. 127, (2014), 255-261.
[21] Babaei A, Zendehdel M, Khalilzadeh B, Taheri A.
“Simultaneus determination of tryptophan, uric acid
carbon paste electrode”. Colloids Surf: Biointerfaces,
Vol. 66, (2008), 226-232.
[22] Fiorucci R, Gomez A, Cavalheiro E. “The use of
carbón paste electrode in the direct voltammetric
determination of tryptophan in pharmaceutical
formulations”. Journal of Pharmaceutical and
Biomedical Analysis, Vol. 28, (2001), 909-915.
[23] A Gopalan, K Lee, K Mahnesh, P Santhosh, J Kim, J
Kang. Electrochemical determination of dopamine
and ascorbic acid at a novel gold nanoparticles
electrode. Talanta, 71, 1774-1781 (2007).
[24] 12. D Jia, J Dai, H Yuan, L Lei, D Xiao. Selective
detection of dopamine in the presence of uric acid
using a gold nanoparticles-poly(luminol) hybrid
electrode. Talanta, 85, 2344–2351 (2011).
[25] W Cun, Y Ruo, C Yaqin, C Shihong, H Fangxin, Z
Meihe. Simultaneous determination of ascorbic
acid, dopamine, uric acid and tryptophan on
gold nanoparticles/overoxidized-polyimidazole
Analytica Chimica Acta, 741, 15-20 (2012).
[26] Cai H, Xu C, He P, Fang Y. “Colloid Au-enhanced DNA
immobilization for the electrochemical detection of
510, (2001), 78-85.
“Amperometric inmunosensor based on layer-by-
layer assembly of gold nanoparticles and methylene
determination of human chorionic gonadotrophin”.
Talanta, Vol. 74, (2008), 1330-1336.
[28] Cai H, Xu C, He P, Fang F. “Colloid Au-enhanced DNA
immobilization for the electrochemical detection of
510, (2001), 78-85.
[29] Kinoshita K, Bett J.A.S., “Potentiodynamic analysis
of surface oxides on carbon blacks”, Carbon, Vol. 11,
(1973), 403–411.
determination of tryptophan in blood serum in the
presence of tyrosine based on the electrochemical
reduction of oxidation product of tryptophan
formed in situ on graphite electrode”. Biosensor and
Bioelectronics, Vol. 31(1), (2012), 26-31.