
512  Mosquera-Sulbarán et al.
  Investigación Clínica 64(4): 2023
7.  Brahadeeswaran S,  Sivagurunathan N,  
Calivarathan L. Inflammasome signaling 
in the aging brain and age-related neurode-
generative diseases. Mol Neurobiol 2022; 
59(4):2288-2304.  https://doi: 10.1007/
s12035-021-02683-5.
8.  Chellappa RC,  Palanisamy R, Swamina-
than K. RAGE isoforms, its ligands and 
their role in pathophysiology of Alzheim-
er’s Disease. Curr Alzheimer Res 2020; 
17(14):1262-1279. https:// doi: 10.2174/
1567205018666210218164246.
9.  Fan H,  Tang HB, Chen Z,  Wang HQ, 
Zhang L, Jiang Y,   Li T,   Yang CF,  Wang 
XY,  Li X,  Wu SX,  Zhang GL. Inhibiting 
HMGB1-RAGE axis prevents pro-inflammato-
ry macrophages/microglia polarization and 
affords neuroprotection after spinal cord in-
jury. J Neuroinflammation 2020; 17(1): 295. 
https://doi: 10.1186/s12974-020-01973-4. 
10.  Ge Y, Huang M, Yao YM. The Effect and 
regulatory mechanism of high mobility 
Group Box-1 Protein on immune cells in 
inflammatory diseases. Cells 2021; 10(5): 
1044.  https://doi.org/10.3390/ 10.3390/
cells10051044.
11.  Chen R, Kan R, Tang D. The mechanism 
of HMGB1 secretion and release. Exp Mol 
Med 2022; 54(2): 91–102. https://doi: 
10.1038/s12276-022-00736-w.
12.  Wang H. Regulation of HMGB1 Release in 
Health and Diseases. Cells 2022; 12(1): 
46. https://doi: 10.3390/cells12010046.
13.  Wang S, Yi Z. HMGB1 in inflammation and 
cancer. J Hematol Oncol 2020; 13(1): 116. 
https://doi:10.1186/s13045-020-00950-x.
14.  Bustin M. Regulation of DNA-dependent ac-
tivities by the functional motifs of the high-
mobility-group chromosomal proteins. Mol 
Cell Biol 1999; 19(8): 5237–5246. https://
doi: 10.1128/MCB.19.8.5237.
15.  Sirois CM, Jin T,  Miller A, Bertheloot D,  
Nakamura H,  Horvath GL,  Mian A,  Jiang, 
J,  Schrum J,  Bossaller L, Pelka K,  Garbi 
N,  Brewah Y,   Tian J,  Chang, C,  Chow-
dhury PS. RAGE is a nucleic acid recep-
tor that promotes inflammatory responses 
to DNA. J Exp Med 2013; 210(11): 2447–
2463. https://doi: 10.1084/jem.20120201.
16.  Tsai KYF, Tullis B,  Breithaupt KL,  Fow-
ers R,  Jones N, Grajeda S, Arroyo JA. A 
role for RAGE in DNA double strand breaks 
(DSBs) detected in pathological placentas 
and trophoblast cells. Cells 2021; 10(4): 
857. https://doi: 10.3390/cells10040857.
17.  Lee BW,   Chae HY,  Kwon SJ,  Park SY, Ihm 
J,  Ihm SH. RAGE ligands induce apoptotic 
cell death of pancreatic β-cells via oxidative 
stress. Int J Mol Med 2010; 26(6): 813-818. 
https://doi.org/10.3892/ijmm_00000529.
18.  Byun K, Yo o  YC, Son M,  Lee J,  Jeon 
GB,   Park YM,  Salekdeh G, Lee B. Ad-
vanced glycation end-products produced 
systemically and by macrophages: A com-
mon contributor to inflammation and de-
generative diseases. Pharmacol Ther 2017; 
177:44-55.  https://doi:10.1016/j.phar-
mthera.2017.02.030. 
19.  Sathe K, Maetzler W,   Lang JD,  Mounsey 
RB,  Fleckenstein C,  Martin HL, Schul-
te C, Mustafa S, Synofzik M, Vukovic Z, 
Itohar, S, Berg D, Teismann P.  S100B is 
increased in Parkinson’s disease and abla-
tion protects against MPTP-induced tox-
icity through the RAGE and TNF-α path-
way. Brain 2012; 135(Pt 11): 3336-3347. 
https://doi: 10.1093/brain/aws250.