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Abstract

In this paper, we introduce the idea of super quasi-topological vector space which is
an extension of the concept of topological vector space and investigate some of its basic
properties. We extend the existing notion of quasi-topological vector space to all complex
vector spaces and investigate the relationship of super quasi-topological vector spaces with
paratopological and quasi-topological vector spaces.

Palabras y frases clave: Topological vector space, paratopological vector space, quasi-
topological vector space, super quasi-topological vector space, quotient space.

Resumen

En este art́ıculo, presentamos la idea del espacio vectorial supercuasitopológico, que es
una extensión del concepto de espacio vectorial topológico, e investigamos algunas de sus
propiedades básicas. Extendemos la noción existente de espacio vectorial cuasi-topológico
a todos los espacios vectoriales complejos e investigamos la relación de los espacios vecto-
riales súper cuasi-topológicos con los espacios vectoriales paratopológicos y cuasi-topológicos.

Key words and phrases: Espacio vectorial topológico, espacio vectorial paratopológico,
espacio vectorial cuasi-topológico, espacio vectorial supercuasi-topológico, espacio cociente.

1 Introduction

Recall that a paratopological group is a group G with a topology such that the group operation
of G is continuous. If in addition, the inversion map in a paratopological group is continuous,
then it is called a topological group.
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According to [2], a real vector space L endowed with a topology τ such that (L, +, τ) is a
paratopological group, is called:

(1) paratopological vector space if for each neighborhood U of λx with x ∈ L and λ ∈ R+ (the
set of non-negative real numbers), there exist a neighborhood V of x and an ε > 0 such
that [λ, λ+ ε[.V ⊆ U .

(2) quasi-topological vector space if the function Hr : L → L defined by Hr(x) = rx with
r ∈ R+, is continuous.

Hence, all translations and dilations of a paratopological (resp. quasi-topological) vector
space are homeomorphisms. For more details, see [1] and [2]. Paratopological vector spaces were
discussed and many results have been obtained (for example, see [1], [2], [3] and [4]).

Lemma 1.1. (cf. [2]) For a real vector space L with a topology τ , the following conditions are
equivalent.

I. (L, τ) is a paratopological vector space.

II. There exists a local basis B at 0 of L satisfying the following conditions:

(a) for every U, V ∈ B, there exists W ∈ B such that W ⊆ U ∩ V ;

(b) for each U ∈ B, there exists V ∈ B such that V + V ⊆ U ;

(c) for each U ∈ B and for each x ∈ U , there exists V ∈ B such that x+ V ⊆ U ;

(d) for each U ∈ B and for each r > 0, rU ∈ B;

(e) each U ∈ B is absorbent and quasi-balanced.

Motivated by the papers [2] and [3], the aim of this paper is to introduce and study the
super quasi-topological vector spaces. Relationship of super quasi-topological vector spaces with
paratopological, quasi-topological and topological vector spaces is investigated.

In the following, all vector spaces are over the field F ∈ {R, C}. For any undefined concepts
and terminologies, refer to [8].

2 Relationship among various classes of topological vector
spaces

In this section, we define super quasi-topological vector space and extend the definition of
paratopological and quasi-topological vector space to all complex vector spaces. Then we in-
vestigate the relation between super quasi-topological, quasi-topological, paratopological and
topological vector spaces.

Definition 2.1. Let L be a vector space that is equipped with a topology τ such that (L, +, τ)
is a paratopological group. We say that (L, τ) is

1. paratopological vector space if for each neighborhood U of rx with x ∈ L and r ∈ R+ (the
set of non-negative real numbers), there exist a neighborhood V of x and an ε > 0 such
that [r, r + ε[.V ⊆ U ;
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2. quasi-topological vector space if the function ϕr : L→ L defined by ϕr(x) = rx with r ∈ R+,
is continuous;

3. super quasi-topological vector space if the function ϕr : L→ L defined by ϕr(x) = rx with
r ∈ R, is continuous.

Proposition 2.1. There is a first countable locally connected quasi-topological vector space which
is not a super quasi-topological vector space.

Proof. Suppose that the complex vector space C× C is endowed with the topology which has a
base of the sets of the formDr×Ds whereDr = { 1√

2
(x−y)+ i√

2
(x+y) : x, y ∈ R, x ≥ r, i2 = −1},

Ds = {s+ iy : y ∈ R, i2 = −1} and r, s ∈ R. Then C× C is a first countable locally connected
quasi-topological vector space but it is not a super quasi-topological vector space. Furthermore,
C× C is not a paratopological vector space. Also, it is neither a second countable nor a lindelof
space.

Proposition 2.2. There is a first countable non-connected quasi-topological vector space which
is not a paratopological vector space.

Proof. Endow the complex vector space C with the topology generated by the family of sets of
the form Dr = { 1√

2
(x− r) + i√

2
(x+ r) : x ∈ R, i2 = −1}, with r ∈ R. Then C is first countable

non-connected quasi-topological vector space. Observe that C is not a paratopological vector
space.

Proposition 2.3. There is a first countable connected paratopological vector space which is not
a topological vector space.

Proof. Consider the topology on the complex vector space C × C which has a base of the sets
of the form Pr × Qs, where Pr = { 1√

2
(x − y) + i√

2
(x + y) : x, y ∈ R, x > r, i2 = −1},

Qs = {x + iy : x, y ∈ R, y > s, i2 = −1} and r, s ∈ R. Then C × C with this topology is a
first countable connected paratopological vector space which is not a topological vector space.
Moreover, it is second countable as well as lindelof space.

Proposition 2.4. There is a first countable non-connected super quasi-topological vector space
which is not a paratopological vector space.

Proof. Obtain the topology on the complex vector space C by the family of sets of the form
Qr = { 12 (r −

√
3y) + i

2 (
√

3r + y) : y ∈ R, i2 = −1}, with r ∈ R. Then C with this topology
is a first countable super quasi-topological vector space, but it is not a paratopological vector
space.

Proposition 2.5. There is a first countable connected real quasi-topological vector space which
is not a super quasi-topological vector space.

Proof. Consider the topology on the real vector space R generated by the family of sets of the form
[a, +∞), with a ∈ R. Then R with this topology is a first countable connected quasi-topological
vector space which is not a super quasi-topological vector space.

Proposition 2.6. Let (L, τ) be a complex paratopological vector space. Then (L, τθ) is also a
paratopological vector space where τθ = {eiθU : U ∈ τ, 0 ≤ θ ≤ 2π}.
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Proof. Let x and y be any two elements of L, and eiθD an open neighborhood of x + y (with
respect to the topology τθ). Then there exist a neighborhood U of e−iθx and a neighborhood V
of e−iθy (with respect to the topology τ) such that U + V ⊆ D. As e−iθx ∈ U and e−iθy ∈ V ,
we have x ∈ eiθU and y ∈ eiθV . This gives

x+ y ∈ eiθ(U + V ) ⊆ eiθD.
Let r be any non-negative real number and eiθU an open neighborhood of rx (with respect to

the topology τθ). Then there exist a neighborhood V of e−iθx (with respect to the topology τ)
and an ε > 0 such that [r, r+ ε[.V ⊆ U which implies that rx ∈ [r, r+ ε[.eiθV ⊆ [r, r+ ε[.eiθU .
Thus (L, τθ) is a paratopological vector space.

Proposition 2.7. Let (L, τ) be a complex quasi-topological vector space. Then (L, τθ) is also
a quasi-topological vector space where τθ = {eiθU : U ∈ τ, 0 ≤ θ ≤ 2π}.

Proof. Follows in a similar way as the proof of Proposition 2.6.

Proposition 2.8. Let (L, τ) be a complex super quasi-topological vector space. Then (L, τθ) is
also a super quasi-topological vector space where τθ = {eiθU : U ∈ τ, 0 ≤ θ ≤ 2π}.

Proof. Follows in a similar way as the proof of Proposition 2.6.

Definition 2.2. We say that a quasi-topological vector space (L, τ) is strong if it satisfies the
following conditions:

1. there exists a topology = on L such that (L, =) is a topological vector space with = ⊆ τ ,
and

2. there exists a local base B at the zero vector of the quasi-topological vector space (L, τ)
such that V \{0} is open in (L, =) for every V ∈ B.

Proposition 2.9. There exists a first countable non-connected strong quasi-topological vector
space which is not second countable.

Proof. Consider the real vector space R endowed with the topology τ which has a base of the
sets of the form (a, b) and [c, +∞), where a, b and c are real numbers. Then (R, τ) is a first
countable strong quasi-topological vector space. Clearly, it is neither a connected space nor a
second countable space.

Proposition 2.10. There exists a first countable non-connected quasi-topological vector space
which is not strong.

Proof. Consider the complex plane C endowed with the topology τ which has a base of the sets
of the form D(z, r) and Dt where D(z, r) denotes the open disk with center z and radius r, and
Dt = {z ∈ C : Re(z) ≥ t, t ∈ R}. Then (C, τ) is a quasi-topological vector space which is not
strong.

Proposition 2.11. There exists a regular super quasi-topological vector space which is not strong.

Proof. Let C and τ be as in Proposition 2.5. Then C is not a strong quasi-topological vector
space.

Proposition 2.12. There exists a Hausdorff strong quasi-topological vector space which is not a
super quasi-topological vector space.
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Proof. Let R and τ be as in Proposition 2.11. Then R is not a super quasi-topological vector
space.

The following result collects the above information and shows that the class of paratopological
vector spaces and the class of quasi-topological vector spaces are sufficiently wide.

Theorem 2.1. The following statements are valid.

1. The class of quasi-topological vector spaces contains the class of super quasi-topological,
strong quasi-topological, paratopological and topological vector spaces.

2. The class of super quasi-topological vector spaces contains the class of topological vector
spaces.

3. The class of super quasi-topological vector spaces is independent of the class of paratopolog-
ical vector spaces.

3 Basic properties of super topological vector spaces

In this section, we investigate some basic properties of super quasi-topological vector spaces. By
definition, every topological vector space is a super quasi-topological vector space, so our results
on a super quasi-topological vector space can be viewed as either improvements or extensions of
results in topological vector spaces. When we say that a topology τ is a super quasi-topology on
a vector space L, we mean that (L, τ) is a super quasi-topological vector space.

Theorem 3.1. For a super quasi-topology τ on a vector space L, x ∈ L and a non-zero real r,
the following hold:

1. the function Tx : L→ L defined by Tx(y) = x+ y is a homeomorphism;

2. the function Hr : L→ L defined by Hr(x) = rx is a homeomorphism.

Consequently for any subset P of L, we have Cl(x+ P ) = x+Cl(P ); Int(x+ P ) = x+ Int(P );
Cl(rP ) = rCl(P ); Int(rP ) = rInt(P ) and for any open (closed) subset Q of L, x + Q and rQ
are open (closed).

Corollary 3.1. Every super quasi-topological vector space is a homogeneous space.

A subset A of a super quasi-topological vector space L is called semi-balanced if for each
x ∈ A, λx ∈ A whenever −1 ≤ λ ≤ 1. It is semi-absorbent if for each x ∈ L, there is a real r > 0
such that λx ∈ A for each real λ satisfying −r < λ < r. Moreover, A is called bounded if for
every neighborhood U of 0, there is a real t > 0 such that A ⊆ sU for all reals s satisfying |s| ≥ t.

As a consequence of Theorem 3.1, it can be shown in a similar way to that of topological
vector spaces, the following result:

Theorem 3.2. Suppose that (L, τ) is a super quasi-topological vector space, x ∈ L, 0 6= r ∈ R
and A, B are subsets of L. The following assertions are valid:

1. A is open if and only if x+A and rA are open;

2. A is closed if and only if x+A and rA are closed;
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3. A is compact if and only if x+A and rA are compact;

4. if A is convex, then so are Cl(A) and Int(A);

5. if A is semi-balanced, then so is Cl(A);

6. if A and B are compact, then A+B is compact;

7. if A and B are connected, then A+B is connected;

8. if A and B are bounded, then so are Cl(A) and A ∪B;

9. any finite subset of L is bounded.

Theorem 3.3. Let τ be a super quasi-topology on a vector space L. There exists a local base B
at the origin satisfying the following conditions:

1. for every U, V ∈ B, there is W ∈ B such that W ⊆ U ∩ V ;

2. for each U ∈ B, there is V ∈ B such that V + V ⊆ U ;

3. for each U ∈ B, there is a symmetric V ∈ B such that V + V ⊆ U ;

4. for each U ∈ B and for each x ∈ U , there is V ∈ B such that x+ V ⊆ U ;

5. for each U ∈ B and r ∈ R, there is V ∈ B such that rV ⊆ U and V r ⊆ U .

Conversely, let L be a vector space and let B be a family of subsets of L satisfying (1)-(5) and
that each member of B contains the origin. Then there is a super quasi-topology on L with B as
a base of neighborhoods of the origin.

Proof. From Definition 2.1, and Theorem 3.1, it is easy to check that conditions (1)-(5) hold.
To prove the converse part, let B be a family of subsets of L satisfying the conditions (1)-(5)

and that each member of B contains 0. Let = = {W ⊆ L : for every x ∈ W, there exists U ∈ B
such that x+ U ⊆W}.

Claim 1. = is a topology on L.
Clearly, L ∈ = and ∅ ∈ =. It is also easy to see that = is closed under unions. To show that

= is closed under finite intersections, let P,Q ∈ = and let x ∈ P ∩Q. Then there exist U, V ∈ B
such that x+U ⊆ P and x+ V ⊆ Q. From condition (1), it follows that there exists O ∈ B such
that O ⊆ U ∩ V . Then x+O ⊆ P ∩Q. Hence P ∩Q ∈ =, and = is a topology on L.

Claim 2. If W ∈ B and x ∈ L, then x+W ∈ =.
Let y ∈ x + W be an arbitrary element. Then −x + y ∈ W . From condition (4), it follows

that there exists U ∈ B such that −x + y + U ⊆ W . This means that y + U ⊆ x + W . Hence
x+W ∈ =.

Claim 3. The family TB = {x+ U : x ∈ L, U ∈ B} is a base for the topology = on L.
Obviously, it follows from Claim 2.
Claim 4. The vector addition mapping in L is continuous with respect to the topology =.
Let x, y be arbitrary elements of L and let W be an element of = such that x+y ∈W . Then

there exists U ∈ B such that x + y + U ⊆ W . For U , there is V ∈ B such that V + V ⊆ U by
condition (2). Then x + V and y + B be two elements of TB containing x and y, respectively
such that

(x+ V ) + (y + V ) ⊆ x+ y + V + V ⊆ x+ y + U ⊆W.
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This ends claim 4.
Claim 5. The function Hr : L→ L defined by Hr(x) = rx is continuous with r ∈ R.
Let W be an element of = containing rx with x ∈ L. Then there exists U ∈ B such that

rx+ U ⊆ W . By condition (5), there is V ∈ B such that rV ⊆ U . Then r(x+ V ) = rx+ rV ⊆
rx+ U ⊆W . This shows that Hr is continuous.

Theorem 3.4. Let (L, τ) be a super quasi-topological vector space. If V is the neighborhood filter
of the origin, then for each x ∈ L, F(x) = {x+ V : V ∈ V} is the neighborhood filter of the point
x. Consequently, a topology of a super quasi-topological vector space is completely determined by
the neighborhood filter of the origin.

Theorem 3.5. Let (L, τ) be a super quasi-topological vector space. If N is the neighborhood
filter of the origin, then for every A ⊆ L, Cl(A) =

⋂
{A+ U : U ∈ N}.

Proof. Suppose that x ∈ U +A for each U ∈ N , and let W be a neighborhood of x. By Theorem
3.4, there is a symmetric V ∈ N such that x+V ⊆W . By assumption, there is some a ∈ A such
that x ∈ a+ V . Since V is symmetric, a ∈ A ∩ (x+ V ). Thus, x ∈ Cl(A).

Conversely, if x ∈ Cl(A), then every neighborhood U + x, U ∈ N , contains a point of A, so
for some u ∈ U , x + u ∈ A. Without loss of generality, we assume that U is symmetric. Then
x ∈ A+ U . It ends the proof.

Theorem 3.6. Let (L, τ) be a super quasi-topological vector space and N the neighborhood filter
of zero in L.

1. The open symmetric neighborhoods of the origin form a fundamental system of neighbor-
hoods of the origin.

2. The closed symmetric neighborhoods of the origin form a fundamental system of neighbor-
hoods of the origin.

Proof. (1) Simple.
(2) If V is a neighborhood of zero, then there is U ∈ N such that U+U ⊆ V . By Theorem 3.6,

Cl(U) ⊆ U + U . Thus, V contains a closed neighborhood of zero. If P is a closed neighborhood
of zero, P ∩(−P ) is a closed symmetric neighborhood of zero contained in V by Theorem 3.1.

Example 3.1. Consider the real vector space C = {x+iy : x, y ∈ R, i2 = −1} where the addition
and multiplication operation of C are the usual addition and multiplication of complex numbers.
Endow C with the topology which has a base of the sets of the form Dr = {r+ix : y ∈ R, i2 = −1},
with r ∈ R (the set of real numbers). Then C with this topology is a super quasi-topological vector
space which is neither a paratopological vector space nor a topological vector space.

Theorem 3.7. Let (L, τ) be a super quasi-topological vector space. Then the following conditions
are equivalent:

1. {0} is closed;

2. {0} is the intersection of neighborhoods of the origin;

3. L is Hausdorff.
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Proof. By Theorem 3.6, (1) and (2) are equivalent. (3) ⇒ (2) is obvious. Let x, y be two
elements of L such that x 6= y. Then x − y 6= 0. By part (2), there is a neighborhood V of
0 such that x − y /∈ U . By Theorem 3.4, there is a symmetric neighborhood V of 0 such that
V + V ⊆ U . Then it is easy to check that x+ V and y + V are disjoint neighborhoods of x and
y, respectively. It ends the proof.

Example 3.2. Consider the vector space C as in Example 3.8. For each z0 ∈ C, with y0 =
Im(z0), denote by Ly0 = {x+ iy0 : x ∈ R, i2 = −1}, the horizontal line passing through y0, and
Bε(z0), the open ball with center z0 and radius ε. Let

Uy0, z0, ε = Ly0 ∩Bε(z0) (3.1)

Obtain the topology on C generated by the family of sets of the form (3.1). Then C is a
Hausdorff super quasi-topological vector space which is not a paratopological vector space.

Example 3.3. Let L be the vector space of all continuous functions on (0, 1). For ϕ ∈ L and
ε > 0, let U(ϕ, ε) = {h ∈ L : |h(x) − ϕ(x)| < ε, for all x ∈ (0, 1)}. Obtain the topology on
L that these sets U(ϕ, ε) generate. Then L with this topology is a super quasi-topological vector
space, but not a topological vector space.

Theorem 3.8. If M is a subspace of a super quasi-topological vector space L, then Cl(M) is
a vector subspace of L over the field of reals. Furthermore, if L is a dense vector subspace of a
super quasi-topological vector space E and if M is a vector subspace of L, then the closure of M
in E is a vector subspace of E over the field of reals.

Proof. Follows from Theorem 3.1.

Theorem 3.9. Let (L, τ) be a super quasi-topological vector space. If C is the connected com-
ponent of the origin and r a non-zero real, then

1. x+ C and rC are connected for each x ∈ L;

2. C is a vector subspace of L over the field of reals.

Proof. Straightforward.

A topological space X is totally disconnected if for each x ∈ X, the singleton {x} is connected
component of X. By Theorem 3.6, a super quasi-topological vector space is totally disconnected
if and only if {0} is the connected component of 0.

Theorem 3.10. Let ϕ be a linear map from a super quasi-topological vector space L to a super
quasi-topological vector space E, and let V be the neighborhood filter of the origin in L.

1. ϕ is continuous if and only if it is continuous at 0.

2. ϕ is open if and only if for every V ∈ V, ϕ(V ) is a neighborhood of 0 in E.

Proof. Follows from Theorem 3.1.

Theorem 3.11. If a vector subspace M of a super quasi-topological vector space L has an interior
point, then M is open.

Proof. Let x be an element of M and V a neighborhood of 0 in L such that x + V ⊆ M . Then
for any s ∈M , we have

s+ V = (s− x) + (x+ V ) ⊆M.
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4 Quotients of super quasi-topological vector spaces

A super quasi-topology on vector space L clearly induces a topology on any vector subspace of
L making it a super quasi-topological vector space, and unless the contrary is mentioned, we
shall assume that a vector subspace of a super quasi-topological vector space is furnished with
its induced topology.

Let M be a vector subspace of a super quasi-topological vector space L. Then there is the
canonical map π of L onto L/M , which induces a topology on L/M , called the quotient topology.
Given a vector subspace M of a super quasi-topological vector space L and x ∈ L, denote by
π(x) or x̃, the coset of M that contains x.

Theorem 4.1. If M is a vector subspace of a super quasi-topological vector space L, then the
quotient map π from L onto L/M is linear, continuous and open.

Proof. The continuity and linearity of π are obvious. Let V be an open subset of L. Since the
map x 7→ a + x from L to L, with a ∈ L is a homeomorphism, π−1(π(V )) = V + M , an open
subset of L, so π(V ) is open in L/M .

Theorem 4.2. If M is a vector subspace of a super quasi-topological vector space L, then L/M
is a super quasi-topological vector space.

Proof. Let π(x) and π(y) be two elements of L/M , and let U be an open neighborhood of π(x+y).
Then π−1(U) is an open neighborhood of x+y in L, so there exist open neighborhoods V1 and V2
of x and y, respectively in L such that V1 +V2 ⊆ π−1(U). Then π(V1) +π(V2) ⊆ U . By Theorem
4.1, π(V1) and π(V2) are open sets in L/M and hence the addition map (π(x), π(y)) 7→ π(x+ y)
from L/M × L/M to L/M is continuous.

Let r be any real number. We have to show that the map π(x) 7→ π(rx) from L/M to L/M is
continuous. As L is a super quasi-topological vector space, so for any neighborhood U of π(rx),
there exists an open neighborhood V of x in L such that rV ⊆ π−1(U). Then rπ(V ) ⊆ U . It
ends the proof.

Theorem 4.3. If V is the neighborhood filter of 0 in a super quasi-topological vector space L, and
if M is a vector subspace of L, then π(V) is the neighborhood filter of 0̃ for the quotient topology
of L/M .

Proof. By Theorem 4.1, π(V ) is a neighborhood of 0̃ in L/M for each V ∈ V. Conversely, if U
is a neighborhood of 0̃ in L/M , then π−1(U) is a neighborhood of 0 in L; so there is V ∈ V such
that V ⊆ π−1(U). Thus, π(V ) ⊆ U .

Theorem 4.4. Let M be a vector subspace of a super quasi-topological vector space L.

1. L/M is Hausdorff if and only if M is closed.

2. L/M is discrete if and only if M is open.

Proof. Straightforward.

Theorem 4.5. If M and N are vector subspaces of a super quasi-topological vector space L such
that N ⊆M , then the quotient topology of M/N is identical with the subspace topology of M/N .
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Proof. Since M is a vector subspace of L, it is a super quasi-topological vector space with the
topology induced by the topology of L. Let ϕ and π be the canonical mappings from M to M/N
and from L to L/N , respectively. Let U be open for the quotient topology of M/N . Then ϕ−1(U)
is open in M , so ϕ−1(U) = M ∩ V where V is an open subset of L.

Claim: U = (M/N) ∩ π(V ).
Let η ∈ (M/N) ∩ π(V ). Then η = x + N for some x ∈ M and η = v + N for some v ∈ V .

This implies that v − x ∈ N , so v ∈ x+N ⊆M +N = M . Therefore, v ∈M ∩ V = ϕ−1(U), so
η = v +N ∈ U . Clearly, U ⊆ (M/N) ∩ π(V ) and the claim follows.

Now let A be open in M/N for the topology on M/N induced by the quotient topology of
L/N . Then A = (M/N)∩B for some open subset B of L/N . Obviously, ϕ−1(A) = M ∩ π−1(B)
is an open subset of M . This means that A is open for the quotient topology of M/N .

Corollary 4.1. If M and N are vector subspaces of a super quasi-topological vector space L, then
the quotient topology on (M + N)/N is identical with the topology on it induced by the quotient
topology of L/N .

Theorem 4.6. Let f be a linear map from a super quasi-topological vector space L to a super
quasi-topological vector space E, and let M be a vector subspace of L that is contained in the
kernel of f . The linear map g from L/M to E satisfying g ◦ π = f is continuous (open) if and
only if f is continuous (open).

Proof. The necessity part follows from Theorem 4.1. Conversely, assume f is continuous. Let U
be a neighborhood of 0 in E. Then g−1(U) = π ◦ f−1(U), so g is continuous at 0. By Theorem
3.14, g is continuous.

Theorem 4.7. If M is a vector subspace of a super quasi-topological vector space L, and if M
and L/M are both Hausdorff, then L is Hausdorff.

Proof. Let x be an element of L such that x 6= 0 and let x ∈ U for each U ∈ V, the neighborhood
filter of 0 in L. Since M is Hausdorff, x /∈ M . Then x+M and M are two distinct elements of
L/M . As L/M is Hausdorff, there are disjoint open sets A and B for the quotient topology of
L/M containing x + M and M , respectively. By Theorem 3.14, π−1(A) is a neighborhood of x
and π−1(B) is a neighborhood of 0 in L. By assumption, x ∈ π−1(B), so x ∈ π−1(A) ∩ π−1(B),
a contradiction. By Theorem 3.9, L is Hausdorff.

Theorem 4.8. If M is the connected component of zero in a super quasi-topological vector space
L, and M a vector subspace, then L/M is totally disconnected.

Proof. Let K be a closed subset of L/M such that π−1(K) is disconnected. We will show that K
is disconnected. Let A and B be non-empty subsets of π−1(K) such that A ∪ B = π−1(K) and
A ∩ B = ∅. As for each x ∈ A, x + M is connected subset of π−1(K) and hence A = A + M =
π−1(π(A)).

Similarly, B = π−1(π(B)).
Since π(A) ∩ π(B) = π(A ∩ B) = ∅ and (L/M)\π(A) = π(L\A) which is open, so π(A) is

closed subset of L/M . Similarly, π(B) is closed in L/M . As

π(A) ∪ π(B) = π(A ∪B) = π(π−1(K)) = K,

so K is disconnected. Now,
if C is the connected component of zero in L/M , and if there is a point π(x) of L/M such

that π(x) ∈ C and x /∈M , then π−1(C) would be disconnected, which is a contradiction. It ends
the proof.
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