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Abstract

In this paper, we shall obtain a compactness of weighted Sobolev embeddings and use it
to get a composition operators from Sobolev spaces into Lebesgue spaces. Applying these re-
sults we shall study the multiplicity for singular asymptotically linear p—Laplacian problems.
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Resumen

En este articulo, obtenemos una compacidad de inmersiones de Sobolev ponderadas y lo
usamos para tener operadores de composicién del espacio de Sobolev en espacios de Lebes-
gue. Aplicando estos resultados estudiaremos la multiplicidad para problemas p—laplacianos.

Palabras y frases clave: Inmersién en espacio de Sobolev, operadores de composicién,
autovalores, p—laplaciano, multiplicidad de soluciones.

1 Introduction

The compactness of Sobolev embeddings in [1, 5] have been extended in [10, 21, 23]. The results
in [21] are very general but not quite convenient to be applied to study partial differental equa-
tions. In this paper we obtain a result on the compactness of weighted Sobolev embeddings (see
Theorem 2.1). Our results include cases of Poincaré-Sobolev’s embeddings and Hardy—Sobolev’s
embeddings.

The Composition Operators studied in [4, 8, 12, 15, 17, 20, 22, 25] usually act between spaces of
same types, for example: Bounded variation spaces, Lebesgue spaces, Sobolev spaces and Orlicz-
Sobolev spaces. In this paper, we prove results on Nemytskii operators from Sobolev spaces into
Lebesgue spaces (see Theorems 2.2 and 2.3). This idea has appeared in [14]. Our results fit
to study problem in partial differential equations. For example, we can study the multiplicity
of asymptotically p-laplacian problem (4.1) with singular condition (4.3). The embbeding in
[14] may be not compact, therefore it is not convenient to study the asymptotically p-laplacian
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problem nor the multiplicity of solutions. We get the compactness of the embeddings in Theorem
2.2.

We prove the weighted Sobolev embeddings and the Nemytskii Operators from Sobolev spaces
into Lebesgue spaces in section 2, extending the results presented in [4, 12, 15, 19] for measurable
functions w € Q. In the third section we improve by theorem 3.2 some results on eigenvalues of
p-laplacian in [3, 6]. Finally, we apply these esults to study the multiplicity of asymptotically p—
laplacian problem in the fourth section, illustrating by an example (Example 4.1) the application
of Main Theorem 4.1.

2 A weighted Sobolev embeddings and Nemytskii opera-
tors

Let N be an integer > 3,  be a bounded domain in RY with smooth boundary 02, and r be in
the interval [1, N). Let W, () be the usual Sobolev space with the following norm

lip= {/Q |Vupdx}p Yu € Wolp(Q)

[Ju

Let o be a measurable function on 2. We put
T,(v) =0v  Yve W, (Q).

We have the following result.

Theorem 2.1. Let s be in [1, %) a be in (0,1), w and 6 be measurable functions on Q such
that |0| < |w|® and T, is a continuous mapping from WL (Q) into L*(Q). Then Ty is a linear

compact continuous mapping from W17 (Q) into L*(Q).

Proof. Since T, is linear and continuous from W () into L*(€2), there is a positive real number
C and

{/ |u|5w|sdaj}s <Clulli,  Yue WET(Q). (2.1)
Q

Thus Ty is a linear and continuous mapping from W17 (Q) to L*(€2). Let M be a positive real
number and {u,} be a sequence in W, (), such that |u,|[;, < M for any n. By Rellich-

Kondrachov’s theorem (Theorem 9.16 in [5]), {u,} has a subsequence {u,, } converging to u in
L*(Q) and {un, } converging weakly to u in W&’T(Q), therefore |jul|1, < lkim inf ||Jup, |1, < M.
—+o0

We shall prove {Tp(uy, )} converges to Tp(u) in L*(Q).
Let € be a positive real number. Choose a positive real number p such that
€S

(2CM)S,U(170)S <

5 (2.2)
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Put @' ={z € Q: w(z) > u}. We have by (2.1) and (2.2)

/ i — ul*|8]°dz < / ftme — ]| d + / i — || d
Q % Q\Q

< M(l_a)s/ |Un,, _u|s|w|asdl‘+uas/ [un, — ul*dx
o o\
< M(l—a)s/ |Unk _u|s|w|asdx+'uas/ |unk —u\sdx
Q Q
< Ol ) i [, ~ uldo
Q

< M(l_a)s(ZCM)s—‘r/j,as/ |, — ul*d
Q

6S

<
-2

+ ,uas/ [thn,, — u|®dz. (2.3)
Q

Since {uy, } converges in L*(2), there is an integer ko such that

S

Uy, — ul’de < p asS_ Vk > ko. 2.4
Q

Combining (2.3) and (2.4), we get the theorem. O

Remark 2.1. Let p(x) be the distance from z to the boundary 9 of Q for any = in Q. If s = r,
w=ptand § = p~ with a in (0,1), the inequality (2.1) is Theorem 8.4 in [16], and (i) of
Theorem 2.1 is proved in [23]. We have Poincaré—Sobolev embeddings in this case.
1
If0isin 2, s =r and w(zx) = 2l for any x in €2, we have Hardy’s embeddings (see [5]). There
are other examples of w in [10, 16, 17, 19, 21, 23].

Theorem 2.2. Let s and w be as in Theorem 2.1 and B be in (0,1]. Let t be in [1,4+00) and g
be a Caratheodory function from Q x R into R. Assume that there are a positive real number c,
a real number B in (0,1] and a function b € L*(); such that
19(2,2)] < clw(@)|F|2|F +bx)  V(z,2) € QxR (2.5)
Put
Ny (v)(z) = g(z,v(z)) Yo e Wy (), z € Q. (2.6)
We have
i) Ny is a continuous mapping from W, (Q) into L*(9Q).
ii) If A is a bounded subset in W,'"(Q), then N,(A) is bounded in L*(%).
iii) If A is a bounded subset in W' () and 8 < 1, then N,(A) is compact in L'(Q).

Proof. i) Put
g1(z.¢) = g(a, lw(@)|77¢)  V(&,¢) € AxR.
By (2.5), we have
lg1(2, O < el|F +b(@) V(2,0 € AxR. (2.7)
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On the other hand

Ny(v) = Nyy 0 T (v) v e WHT(Q). (2.8)
Applying Theorem 2.3 in [12] and Theorem 2.1, we get the theorem. O

) ) Nr s

Theorem 2.3. Let g be as in Theorem 2.2 with s € | 1, N_, and t = T Put
—r 5 —
u(z) L
U, (u) = / / g(x,&)dédx Vu € Wy (). (2.9)
aJo

We have

i) U, is continuously Fréchet differentiable mapping from Wol’T(Q) into R and
DV, ((@) = [ ol Oods  Vuo € WyT(@) (2.10)
ii) If A is a bounded subset in W,'" (), then there is a positive real number M such that
T, 0)|+ DV, <M Voe A

Proof. Let g1 be as in the proof of Theorem 2.2. Put

u(x)
q/gl(u)z/g/o g1(z, &)dede Yu e Wy ().

By Theorem 2.8 in [12], then ¥y, is continuously Fréchet differentiable mapping from L°(f2) into
R. We see that Wy = ¥, oT|,s. By Theorem 2.1, we get the theorem. O

Remark 2.2. If w =1, Theorems 2.2 and 2.3 were proved in [4, 12, 15, 19].

3 Eigenvalues for p—laplacian

Let r = s =pbein [2,N), w and « be as in Theorem 2.1 such that w # 0. Put o = |w|*?. By
Theorem 2.1, there is a real number A such that

A = inf {/ |VulPde : uwe W) (Q), / olulPdx = 1} . (3.1)
Q Q

We have the following result.

Theorem 3.1. There are vi and vy in WOIP(Q) such that v1 > 0 and v2 <0 and

/Q|Vvi|p_2Vv¢V¢dm = )\/Qa|vi|p_2w¢dat Vi=1,2; o € Wy (Q). (3.2)
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Proof. Put

E(u) = / |VulPdz — Yue Wy (),
Q

S(u):/0|u|pd:c Yu € Wy (),
Q

Sl(u):/ lulPdz  Yu e Wy (Q),
Q

M= {u e WET(Q) : Si(u) = 1}.

By Theorem 2.1, M is weakly closed in WO1 "P(Q). We see that E is coercive and weakly lower
semi-continuous on W, *(2). By Theorem 1.2 in [24], there is w in M such that

E(w) = min{E(u): u e M}. (3.3)

Hence

/|Vw|pdz:/\/ olwPdz. (3.4)
Q Q

Put v; = |w| and vy = —|w|. By Lemma 7.6 in [13], v; and vy belong to W, *(2) and E(v;) =
E(vg) = E(w). By Theorem 9 in [7], E is continuously Fréchet differentiable on W1?(£2). Since
S is continuously Fréchet differentiable on W1P(Q) and S = S o Tjwje, by Theorem 2.1, S is
continuously Fréchet differentiable on W1?(€2). Thus by Theorem 43.D in [26], there are real
numbers A\ and A, such that

DE(v))p = X;DS(vi)e  Vi=1,2; o € W} (Q) or

/ |V; [P~ Vv; - Vpdr = )\;/ olvi|P 2vipde Vi=1,2; ¢ € Wy (). (3.5)
Q Q
Taking ¢ = v; in (3.5), we see that A, = X for any ¢ = 1,2 and we get the theorem.
O
Put (o) = X and ¢(0) = ||v1]|~tv; where 6, A and v; are as in Theorem 2.3. If 0 = 1, we

denote (o) by A\;. We have the following results.

Theorem 3.2. Let o be in (0,1), o1 and o9 be two measurable functions on such that 0 < o1 < 09
and o < |w|*?. Then 0 < y(o3) < v(01).

Proof. By Poincaré’s inequality, / |VulPdx > 0 when / oslulPdx = 1. Thus by the proof of
Q Q
Theorem 2.3, we get 0 < v(02).
Since / o1|ulPdx < / oa|ulPdz, we see that v(o2) < v(07).
Q Q
O

Remark 3.1. If o, o1 and o9 are in L*({2) with some s in (%, +oo), Theorems 2.3 and 3.2 were

proved in [3, 6].
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4 Multiplicity of asymtotically linear p—laplacian problems

Let p be in [2,N) and ¢ be in (1,p), f be the real Caratheodory function on Q x R, and h be a
real measurable function on 2. We consider the following p—Laplacian problem:

{ —Apu = h(z)|ul"u + f(z,u) (4.1)

u=0 on ON.

Our main result is

Theorem 4.1. Suppose

(F1) There exist « € (0,1), o = a%l, C € (0,400), a measurable real function Vo on ,
positive measurable real functions Vi, Vo and n on ) such that T}, is a continuous mapping

from W3P(Q) into LP(Q) and

(/Q |nv|Pd:c)’l’ < Clolh, Yoewir(Q). (4.2)
1f(z,8)| <P D(2)|s|P~t = pP(z)|s|Pt  VrxeQ, VseR. (4.3)
lim |J;(|f’2 = Vo(zx) Vo € Q. (4.4)
im f;(lf’jl = Vi(z) Yz € Q. (4.5)
im |J; (|:—2 = V(z) Vze (4.6)
(V1) There exists a positive constant ¢y such that
[ (9l = Volul?) de = colullt, v € W3 ) (47)

(V2) Vi #0 and 0 < ~v(V;) <1 for any i =1,2.
(V3) Vo >0 for e.a. x € Q.

(H1) |n|7an~v 4 is integrable on .

apq

(H2) There is a sufficiently small positive number T such that H|h|ﬁ777 p—aq <.

1

Then the problem (4.1) has at least two non-trivial solutions uy and us such that u; > 0; ug < 0;
J(u1) >0 and J(uz) < 0, where

F(z,s) = /OS flz, t)dt V(z,s) € @ xR and (4.8)
! Py — 1 x)|u|tdx — x,u)dx
J(u) = /Q];|Vu| dx q/gh( )|u|?d. /QF( ,u)de. (4.9)

Corollary 4.1. Theorem 4.1 still holds if we replace (V3) and (H2) by the following condition:
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(H3) h <0 a.e on .
Corollary 4.2. Corollary 4.1 still holds if we replace (V1) and (H3) by the following conditions
(V1)
/ (IVulP = VolulP)de >0 Yue W, P(Q).
Q
(H4) h <0 a.e on Q.

Theorem 4.2. Suppose that conditions (F1), (V1), (V2), (V3), (H1) and (H2) hold. Assume
also that (H5) There exists v € Wy *(Q) such that

/ h(z)lvt|%dz > 0.

Q

Then the problem (4.1) has at least four non-trivial solutions uy, usz, ug and uy such that uy > 0,
uz >0, uz <0, ug <0 and J(uy) >0, J(uz) >0, J(uz) <0 and J(ug) <O0.

To prove these results we need the following notations. Let u be in WO1 P(Q), F and J be as
in (4.8) and (4.9). Put

u" = max{u, 0}, u~ = min{u, 0},
1 1
J* :/ f\Vu|pdx—f/ h(x)\ui|qda:—/F(x,ui)dx. (4.10)
Qb qJa Q
By Theorem 9 in [7], (F1) and Theorem 2.2 (with r = s = p, ¢t = ;55 and 8 = «), the
functionals J and J* belong to C''(W,?(Q),R). Moreover, for every u and v in W, (Q),
(DJ(u),v) :/ |Vu|p72Vqudxf/ h(x)\u|q72uvdxf/ f(z,u)vdx (4.11)
Q Q Q
(DJY (u),v) :/ |Vu|p72Vqudx—/ h(m)(u+)q72u+vda¢—/ f(z,uM)vde (4.12)
Q Q Q
(DJ™ (u),v) :/ |Vu\p_2VuVUdm—/ h(;r)|u_|q_2u_vdw—/ fz,u™ vde (4.13)
Q Q Q

We have the following lemmas.
Lemma 4.1. Under (F1), (V2) and (H1), the functionals J* satisfy the Palais—Smale condition.

Proof. We prove JV satisfies the Palais-Smale condition, the other case is similar. Let {u,} be a
sequence in W, *(2). Assume 111;1_1 DJ*(u,) =0 and |J*(u,)| < M for a real number M. We
n—-+0o0

shall prove that {u,} has a convergent subsequence in W, "*(2). By (4.10) and (4.12), we obtain

’/ %|Vun|pdx— é/ h(m)(uz)qd;r—/ F(z,u})dz| < M, (4.14)
Q Q Q

/\Vun\pﬁVunAvdm—/h(m)(ui)qﬂuivdw—/f(:uui)dw
Q Q Q

<IDIF (ua)llllolh, Yo € Wo(9). (4.15)

First, we prove {u,, } is bounded, indeed, take v = u;, in (4.15) we have

< DT () [l 11, p-

_ 1 _
hizll?, = \ [ Svulras
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Hence [Ju,, |17, L < |DJ* (u)]] — 0, or llu, |l1,p — O.
Now we prove the boundedness of {u;}}. Suppose by contradiction that {u;}} is unbounded,
then there exists a subsequence of {u,} (also denoted by {u,}) such that a, = |Ju;"||1, > 0 for

any integer n and lim a, = +oo. By (4.12), we have
n—+o0o

/|Vun|p_2Vuandac—/ h(x)(u} )2 +vdx—/ flo,wl)dw
Q Q

Q

< ||DJ+(un)H||vH1,p + ‘/ |Vu;|P*2Vu;Vvdx
Q

1p+ (/ |Vu;|(p_1)pldm> ’ (/ Vv|pdx) ’
Q

< DT lollip + g 5 0l Yo € WP (). (4.16)

< [DJ* (un)|[[Jv

+
U
Put w, = —*. Divide both sides by aZ~!, we obtain
QA

/|Vun|p_2Vuandx—/ h(x)(u})e? +vda:—/ f(z
Q

||DJ+(un)HHU||1, 1
p—1 - apleun”p Hvlll,p (4.17)

an n

Note that ||wy|l1,, = 1. By Theorem 9.16 and Theorem 4.4 in [5], (4.2), (4.3) and Theorem 2.1,
there exist a subsequence of {w,,} (also denoted by {w,}), a function w € W, (Q) and k € L*(Q)
such that:

(i) {w,} weakly (resp. strongly, pointwisely) converges to w in Wy"*(€) (resp. in LP(), on
Q),

(ii) {wpn®} strongly (resp. pointwisely) converges to wn® in LP(Q2) (resp. on ), and
(i) wal? + P < k.

By (H1), we have

[ el utaras
s(Lhuw%n?MQ

)™ wn ()|9 o (2)n d

[
( /Q kldx) B ( /Q |U(a:)|p77“pda:>;

pP—g
p

Thus

E z)|w(x)| T o(x)de = 0. .
Jim a7 [ @)™ @) =0 (418)
By (4.3)
P @) o i i (@) = 0
‘ ah ! o) = an(x)p_lv(:c) if ut(x) £ 0
<000 @) [ (2) [P ()] < BT (). (4.19)
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Let Q0 = {x € Q: w(z) =0} and Q" = {z € Q: w(z) > 0}. Since w(z) > 0 for all x € €,
result that Q = Q° U Q. Let o be in QF, we have liril up(z) = 400. By (4.6) and (4.19), we
n—-+0o0
have
lim T
n—+00 aﬁ_

By (4.6), (4.3) and (4.2), we have

p—1 1
[Vaw? ™ o|dz < / 7P~ DoP=L|y|dx < (/ |77awpdx> </ |vpdx> < 0.
Q Q Q Q

Since k € L'(Q) and v € LP(Q), by Hélder’s inequality, k5w belongs to L'(€). Applying
Lebesgue’s Dominated Convergence Theorem, we have

f(x,uj;(a:))v(x) _ { 0 if w(z) =0
Vo(z)w(z)P~to(z) if w(z) #0.

lim /f o “" z)d f/vg Lo(z)de Yo € WEHP(Q). (4.20)
n—-+4oo

We shall prove that {w,} converges to w in W, "*(2). Let T be the operator —A,, from W, (Q)
into Wol’p/ (Q), where % + 1% = 1. By Theorem 10 in [8], T is of class S, that is, {t¢,} strongly
converges to 1) in Wolp(Q) if {1, } weakly converges to ¢ in Wol’p(Q) and limsup T' (¢ ) (Vm—9) <
0. Note that e
T()(0) = / |Vo|P~2V¢Vhdz, Vo,0 € WP (Q).
Q

Using a similar argument as above for w,, — w instead of v, we obtain the following results

|/ \Vwm|p72Vme(wm —w)dzx
Q

f('rv u:rn) p—1
+ |p—1 m

(W, — w)dz
Q ‘um

)| W |97 (W, — w)dr —

< ||DJ+(um)H||wm —wllp+
1
Ll 5 w0 — w1, Y0 €N, (4.21)
. q—1 . _
mgIEOO = /Qh(x)|wm| (W, —w)dz =0 (4.22)
lim f( )wpfl(wm —w)dx = 0. (4.23)

Since {||wym — w1} is bounded and |Ju;,|l1,, — 0, by (4.22), (4.23) and (4.21), we have

lim sup T'(w, ) (W, — w) < 0,

m——+o0o

which implies that {w,,} strongly converges to w in Wol P(Q) and thus

lim / |V [P~ 2 Vwm Vodz = / |Vw[P*VwVoude Yo € WyP(Q). (4.24)
Q

m——+oo Q
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(c.f. Theorem 9, [8]). Combining (4.17), (4.18), (4.20) and (4.24), we get
/ |Vw[P~2VwVodz —/ Va(z)wP ™ vde Yo € W, P (). (4.25)
Q Q

Note that w > 0 and w # 0, by (4.25) we have w = ¢(V3) and v(V,) = 1, which is a contradiction
o (V2). This contradiction gives us the conclusion that {||u; ||} is bounded.
Therefore {u,,} is bounded in W0 P(Q). By Lemma 6.2 in [12], {u,,} is strongly convergent
1,p
in WP ().
O

Lemma 4.2. Suppose conditions (4.4), (F1), (V1), (H1) and (H3) hold. Then there exist positive
real numbers R and C' such that

JE(u) > Cllullf Vu € Bgr(0).

Proof. If we have
J(u) = Klullf,,  Vu € Bgr(0)\{0}.

then the result follows. Indeed,
1 1 1
TE(u) = J(u¥) +/ ~|VuTPde > K|[u®[)] , + = [[uT [}, > min{K, ~}Ju]]7,
Qb ’ p ’ p ’
Suppose by contradiction that for each n € N there exists u,, € B1(0) \ {0} such that J(u,) <

1
E||un||ff7p7 that is

1 1 1
fVupdxff/hx unqdzf/Fx,und:E<—unp . 4.26
/Qpl | A () unl A (2, un) lunllt (4.26)

Put a, = |lun1,p € (0, 21), and w, = 2. Divide both sides of (4.26) by al,, we obtain

/EM, |pd$_1/w_/wdx<z
Qb " qJa ab? Q an n’

Since h < 0 a.e. on £ and a,, > 0, we have

p
n

1 F 1
/ L, Py — L) 5o 1 (4.27)
Q p a n

Since ||wy||1., = 1, as in the proof of Lemma 4.1 and (4.19), there are w € W, ?(Q) and k € L(Q)
such that for any x in

‘f x, sanwn(x))

anwy (z)] < P VP, (z)P7L < P71k se (0,1)n e N.

Thus by Lebesgue’s Dominated Convergence Theorem, Fubini’s theorem and (4.4), we have

lim / I, anwn d:,C = lim / S, sanwn ))anwn(x)dsdx

n—+oo n—4oo

1
lim // f x, Sanwn )) p_1|wn(x)|p_1wn(x)dsdx=f/ V0|w|p_1wdx.
n——+oo [sanw,, (z)[P—1 pJa
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Replace w,, by w, we have a similar result
n n 1 —
1mt/ﬂﬂigﬁﬂmzf/%mwhmm (4.28)
n—=+oo Jo an pJa
y (V1) (actually, we only need (V1’)), we have
1 1
/ —|Vw|Pdz > f/ Volw|Pdex.
Qb PJao
It follows that for any € > 0, there exist N, € N such that,
F(
[ oivupas - [ HEtis s e wen (4.20)

From (4.27) and (4.29), for n > N, we have

/*|an|pd /Fx“n—wn())dx / IV |pdx+/FL%())

This implies
1 1
lim sup [/ —|Vw,|Pdz —/ |Vw|pdx] <eg, Ve > 0.
Qb QP

n—+00

Hence

1 1
lim sup [/ —|Vw, |Pdz —/ |Vw|pdx] <0.
n—+too LJQ P QP

1
dr < — +¢.
n

By Theorem 6 in [7], the space (W, ** (), | - ||l1,p) is uniformly convex, then by Proposition 3.32
in [5], we have w,, — w in W, "*(2) and therefore, |[wl||;, = 1. On the one hand, from (V1), we

have ) )
/ —|Vw|Pdz — 7/ Volw|Pdx > collwll1,p = co > 0.
Qb pJa

On the other hand, let n — 400 in (4.27), we obtain

1 1
/7|Vw|pdxff/vo|w|pdx§0
Qb b Ja

This is a contradiction. Thus we get the lemma.

O

Lemma 4.3. Suppose conditions (4.4), (F1) (V1’), (H1), and (H4) hold. Then there exist

positive real numbers R and C such that
JE(u )>C’||u||1p7 Yu € Br(0).
Proof. Arguing as in Lemma 4.2, we only need to show

J(u) = Kllullf ,,  Vu € Br(0)\{0}.

Suppose by contradiction that for each n € N there exists un w, € Bi(0) \ {0} such that

J(un) < &[lun|[f ,, that is

1 1 1
/*‘Vunv)dw—*/ h(a:)|un|qu—/ P, un)dz <~ unf,
Qb q.Ja Q

(4.30)
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Divide both sides of (4.30) by af, where a,, = |luy|1,, € (0,1), and w,, = =, we obtain

ay’

1 1 [ h(z)|w,|? F(z, apwn, 1
[ a1uapae— 2 [ MOl g, [ HEtatin) gy o L (431)
Qb 49/ an Q an n
Since a, € (0,1) and A < 0 a.e. on €2, then (4.31) becomes
1 1 F(z, anwn 1
/ —|Vw,|Pdz — 7/ h(z)|wy|?dz —/ Mdm < —. (4.32)
b qJqa Q an n

Since |[w,|[1, = 1 for any n, then we can assume {w,} weakly converges to w in Wy ().
Arguing as in the proof of Lemma 4.1, we obtain

lim h(gc)|wn\qdm:/ lim h(x)|wn|qda::/h(at)|w|qu
Q Q n—+oo

n—-4oo Q
F 1
T AL [ Voluprds ana
n—-+oo Q an p Q

1 1
/f\Vw\pdx—f/h(x)\w|qu7/V0\w|pdz§().
QP q.Ja Q

_/Qh(z)m\qu = 0.

Thus by (H4), w = 0 a.e. on €2, which contradicts to ||wl|/1,, = 1. The lemma is proved. O

By (V1’), we get

Lemma 4.4. Suppose conditions (4.4), (F1), (V1), (V3) and (H1) hold. Then there exists

a constant T > 0 having the following properties: for all measurable function h on € with

b2l _ opg
‘hn‘ p=anq P-4

) < T, there exist positive numbers o and p such that J*(u) > p for all
u € Wy (Q) with ||ully, = o.

Proof. We consider the case of JT, the case of J~ is similar. Suppose by contradiction that: for
= < 7 such that, for all

all 7 > 0, there exists a measurable function h with H|hn|p%zn veall
L

o >0 and > 0, we have u € Wy(Q) with ||ul1, = ¢ and J*(u) < 7.
Choose 7 = ﬁ, o= %, n = # where n € N, we have: for any n € N, there exist a

measurable function h,, and u, € W, () such that H|hn|ffqn_% P~ s [[unllip =1
and
+ 1 P 1 +\4 + 1
I (un) = ; ;\Vun\ dr — 2 Qh(l’)(un) dz — QF(x,un)d:c < (4.33)
Divide both sides of (4.33) by a?, where a,, = [[uy|l1,, = 2, and w,, = %=, we obtain
1 1 h )4 F + 1
[ Siwwarac—= [ hu@) (i) / Fla,anwy) g o 1, (4.34)
QP qJo  ap? 0 an n

and ||w, |1, = 1, then we can assume {w,} weakly converges to w in Wy?(Q). Arguing as in
the proof of Lemma 4.2 we obtain

F(z, anw; 1
1mAJﬁ%@szf/wmﬂmx (4.35)
n—+4oo an P Ja
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By Hélder inequality and (4.2), we have
+1g N pP=g q
R dm‘ < wt ([t ) ([ otpae )
o an ! Q Q
< nP~1C g nP~iC C
< ey < 2o =
Therefore . N
q
i [ @l (4.36)
n—-+4o0o Q a% q

From (4.34), (4.35), (4.36), (V3) and (V1), we get

1§/V0\w+\pdx§/Vo\w|pdm§/|Vw|pd:E.
Q Q Q

By Theorem 6 in [7], the space (Wy*(€), ]| - ||1,) is uniformly convex, then by Proposition 3.32
in [5], we have w,, — w in Wy?(Q) and therefore, ||w||;, = 1. From (4.35), (4.36) and letting

n — 400 in (4.34), we have

1 1
/f\Vw\pdx—f/Vo\dea:SO,
Qb pJa

which contradicts to (V1). Therefore we get the lemma.

Lemma 4.5. Under conditions (V2), (F1), (V2) and (H1), we have

AL CIUE ) S R L))

t——+o0 tP t——+oo tP

<0

Proof. Put v = ¢1(V2), then ||v]1, =1, v >0 and

A |Vol|P2VuVwdr = (Vs) /Q Va(z)|v[Powde — Yw € WyP(Q).

Thus
/ VolPdz = A(Va) / Va(o)|ulPda.
Q Q

By (4.10) we have

! P ! Idx — x,tv")dx
J+(tv):/Qf|V(tv)| dfo/Qh(:r)(thr) d /F( ,toT)da.

p Q
It implies that

Jt(tv) 1

By Hoélder’s inequality, (H1) and (4.2), we have

1 1
:7/ |Vv|pdzfﬁ/ h(a:)|v\qd:cf—/F(ac,tv)dz.
tp pJo q Q trJa

(4.37)

(4.38)

(4.39)

q

pP—gq a
/|h\|v|qu:/ |h|n~ 9% o|n?®da < (/ |h\ﬁn*%dm> ! (/ |U\Pnpad:p)” < 0.
Q Q Q Q
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Hence
t—>+oo e / h(z)|v|%dx = 0. (4.40)
As in (4.28), we get
lim tl F(z,tv)de = %/{zvg(x)|v(x)|pd:r. (4.41)

t—+oo tP Q

Combining (4.38), (4.39), (4.40) and (4.41), we have

+ 1 1
lim T (tv) = f/ \Vv|pdx—f/V2\v\de
P Jo pJa

1
= 7/\Vv
P Jo

- L)

which contradicts to (V2) and that completes the proof of Lemma. O

Lemma 4.6. Under conditions (F1), (H1) and (H5), we have

JE(+t
i 2t

<0,
t——4o00 tpP

where v is given in (H5).

Proof. Let {t,} be a sequence of positive real numbers such that ¢, — 0 as n — +oo. First, we
consider the case of J*. We have

+
J S””) - ;[/ *|thv\pdx—f/h )(tnv )qu_/F(mt“ )dm]

/ h(z)(v*)da — f/ (z, v (4.42)

By (F1), we have

/F(x,v*)dx =
// alp— 1) (1€t vﬂ Yt ’dﬁdm—//

,tp/ a(p—1) \v|pdx.
p Q

It follows that

tn'u+

1
f(:v, EtuT)déda

flz,7)drdx

Ap=Dep=1yp () )P’dgdm

1
lim —q/F(x,tanr)dx:() and
n—+o0o ip Jo
Jr(t 1
lim (t0) = —7/ h(z)(vh)%dz < 0.
Q

t—0+ 14 q
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In case of J~, note that —v™ = (—v)~ then (—t,v)” = —t,v1 = t,v, we have

I(tar) _ 1{/ L9 twrar =1 [ h@lt) e~ [ P () o

th th
/ ywide — — / x, —t,v)dx.
Arguing as in the case J“‘7 we also have

"
lim ) _ J/ h(@) vt |9dz < 0.
Q

t—0+ te q

O

Proof of Theorem 4.1 We have J*(0) = 0. By Mountain Pass Theorem in [2], Lemma 4.1,
Lemma 4.4 and Lemma 4.5, there exists a critical point uy of J* with J™(uy) > pu > 0 (u is
given in Lemma 4.4). We prove that u; > 0. Since w; is the critical point of JT, by (4.12), for
any v € WyP(Q)

/Q\Vu1|p_2Vu1Vvdx—/Qh(a:)(uf)q_Qufvdx—/Qf(a:,uf)das:0. (4.43)

Take v = w7 in (4.43), we obtain
/ [Vuy [Pdz = 0.
Q

Hence u; = 0 a.e. on §, this implies u; > 0 a.e. on Q. Since J*(u1) > 0, then u; # 0, therefore
uy is a non-trivial nonnegative weak solution of the problem (4.1) such that J(uq) = J*(u1) > 0.

Arguing similarly for J~, we obtain a non-trivial non-positive weak solution us of (4.1) such
that J(ug) > 0.
Proof of Corollary 4.1 Using Mountain Pass Theorem in [2], Lemma 4.1, Lemma 4.2 and
Lemma 4.5, and arguing as in Proof of Theorem 4.1, we get the corollary.
Proof of Corollary 4.2 Using Mountain Pass Theorem in [2], Lemma 4.1, Lemma 4.3 and
Lemma 4.5, and arguing as in Proof of Theorem 4.1, we get the corollary.
Proof of Theorem 4.2 By Theorem 4.1, we have two nontrivial weak solutions for (4.1), one
solution is non—negative and one solution is non—positive, but both of them have positive energy.
Therefore, we only need to find two nontrivial weak solutions for (4.1) which have negative energy.
The first one is found by J*, and the second is found by a similar argument for J—.

J is lower semi—continuous by its differentiability. Let 7, ¢ and p as in Lemma 4.4. Put
B ={ueW;”(Q): |ulp < o} Arguing as in (4.39) and using (ii) of Theorem 2.4, we sece
that J*(B) is bounded. Put ¢ =infpJ*, then by Lemma 4.6, we have ¢ < 0.

For n € N, let u,, € B such that

1
+
c< J (up) <c+ ol (4.44)

Let e € W, P(Q) with |le]|l;, = 1. Apply Ekeland’s Variational Principle in [11] with ¢ = L and
6= %, there exists v,, € B such that

T (o) = T (0n) < T (va 4 t6) = T (0n + 1)+ tlllelp V€ R {0}

n

JT () < IV (un). (4.45)
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From (4.45), we have

Tt (v, + te) — Tt (vy) 1
It] T
s JT (v, +te) — T (vy) 1
z ; 2> - if t >0,
JT (v +te) — T (vy) Z—l 1<,
—t n
Therefore
‘J“L(vn—I-te) — J T (vy) -
t n

Letting t — 0, we have

1
|DJ* (vy,)(e)] < —y Ve€ Wo (), llellp =1.
Therefore
1
. + _ . + . B
nllg-il:loo (= (U”)H(W(}'p)* o ngr}rloo <|€S|}1]I,)_1 D7 (vn)(e)> = ngr-lrrloo n 0

Since ¢ = infpJ T, by (4.44) and (4.45), we have

1

c§J+(vn) <c+ ol (4.46)

Therefore, J*(v,) — ¢ as n — +oo. It follows that {v,} is a Palais-Smale sequence. By (4.5),
we can assume that v, — vo in Wy"*(€2). Hence,

DJ*t(v) = lim DJ (v,)=0 and J(vg)= lim J¥(v,)=c<O0.

n—-+oo n—-+o0o

Therefore, vg is a critical point of J™ with negative energy. Arguing as in Proof of Theorem 4.1
we get have vy > 0 and Theorem 4.2.
Remark 4.1. If n in (4.3) is constant, the results in this section have been proved in [9].

Example 4.1. Let p = 2, Q be the unit ball B;(0) in RN (N >3) and n(z) = (2XA1)3 (1 — |z[)~!
for any x in Q. By Theorem 8.4 in [16], there is a real number ¢ > 1 such that

/ ulPde < cllullf,  Yue Wy?(Q). (4.47)
Q
. 2)\1 1 .
Let § be in {0, —————— | and [ be a real C* —function on 2 x R such that
C(1+2/\1)
1
fla,s)=0(1—|z*)"5s ifls| < 5. Yz e Q,
F(z5)| € [0,20 (1 |o)~F 5] ifls| € [4,1], v e, (4.48)
2A183(1 — |z|?)* :
fle) = 2D eyt 2L v en

S 1+ s2(1— |zf?2)t

Divulgaciones Matematicas Vol. 20, No. 2 (2019), pp. 45-62



Composition operators from Sobolev spaces into Lebesgue spaces 61

(i)

(ii)

(iii)

We have

Vo) = lim 258 _ 51— a3, veeq

s—0 S

We get (V2), (F1) with o = 2 and
/Q (IVulP — Volul?) dz > (1 - as)uunivol,z Vu € Wy (Q).

Thus (V1) is fulfilled.

Put Vi(z) = Va(x) = 2M1 (1 — |z]) =3 for every x in Q. Since Vi(z) = Va(z) > Ay for every
x in Q, by Theorem 3.2, A(V1) = AM(Va) < 1 and we get the condition (V2).

Let g = % and h = 577% = 67]% with a sufficiently small positive real number e, then we get
(H1).

Thus we can apply Theorem 4.1 for f and h, but the results in [9] do not work in this case.
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