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Abstract

A necessary and sufficient condition in terms of lower cut sets are given for the inser-
tion of a Baire-.5 function between two comparable real-valued functions on the topological
spaces that F,-kernel of sets are F,-sets.
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Resumen

Se proporciona una condicién necesaria y suficiente en términos de conjuntos de cortes
inferiores para la insercién de una funcién Baire-.5 entre dos funciones comparables de valo-
res reales en los espacios topoldgicos donde el F,-kernel de los conjuntos es Fi-sets.

Palabras y frases clave: Insercién, relacién binaria fuerte, funcin Baire-.5, nicleo de
conjuntos, conjunto de corte inferior.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [16]. He investigated the sets
that can be represented as union of closed sets and called them V-sets. Complements of V-sets,
i.e., sets that are intersection of open sets are called A-sets [16].

Recall that a real-valued function f defined on a topological space X is called A-continuous
[21] if the preimage of every open subset of R belongs to A, where A is a collection of subsets
of X. Most of the definitions of function used throughout this paper are consequences of the
definition of A-continuity. However, for unknown concepts the reader may refer to [4, 10]. In
the recent literature many topologists had focused their research in the direction of investigating
different types of generalized continuity.
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J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number
of researchers have also initiated different types of contra-continuous like mappings in the papers
[1,3,7,8,9,11, 12, 20].

Results of Katétov [13, 14] concerning binary relations and the concept of an indefinite lower
cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary
and sufficient condition for the insertion of a Baire-.5 function between two comparable real-
valued functions on the topological spaces that F,-kernel of sets are F,-sets.

A real-valued function f defined on a topological space X is called contra-Baire-1 (Baire-.5) if
the preimage of every open subset of R is a Gs-set in X [22]. If g and f are real-valued functions
defined on a space X, we write g < f (resp. g < f) in case g(z) < f(z) (resp. g(x) < f(z)) for
all z in X.

The following definitions are modifications of conditions considered in [15].

A property P defined relative to a real-valued function on a topological space is a B — .5-
property provided that any constant function has property P and provided that the sum of a
function with property P and any Baire-.5 function also has property P. If P, and P, are
B — .5-properties, the following terminology is used:

(i) A space X has the weak B —.5-insertion property for (Pi, Py) if and only if for any functions
g and f on X such that g < f, g has property P; and f has property P», then there exists
a Baire-.5 function h such that ¢ < h < f.

(ii) A space X has the B — .5-insertion property for (Py, Py) if and only if for any functions g
and f on X such that g < f, g has property P; and f has property P», then there exists a
Baire-.5 function h such that g < h < f.

In this paper, for a topological space that F,-kernel of sets are F,-sets, is given a sufficient
condition for the weak B — .5-insertion property. Also for a space with the weak B — .5-insertion
property, we give a necessary and sufficient condition for the space to have the B — .5-insertion
property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions
and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, 7). We define the subsets A* and
AV as follows:

AN =([0:024, 0c(X,7)} and AY =| {F:FCA, F° e (X,7)}.
In [6, 17, 19], A® is called the kernel of A.
We define the subsets G5(A) and F,(A) as follows:
Gs(A) = J{O:0C A, O isGyset} and F,(A)=[){F:F2AF is F,-set}

F,(A) is called the F,-kernel of A.
The following Lemma is a direct consequence of the definition Fj,-kernel of sets.
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Lemma 2.1. The following conditions on the space X are equivalent:
(i) For every G of Gs-set we have Fy(G) is a Gs-set.
(1t) For each pair of disjoint Gs-sets as G1 and Go we have F,(G1) N F,(Gs) = 0.
The following first two definitions are modifications of conditions considered in [13, 14].

Definition 2.2. If p is a binary relation in a set S then p is defined as follows: x p y if and only
if y p v implies z p v and u p x implies u p y for any u and v in S.

Definition 2.3. A binary relation p in the power set P(X) of a topological space X is called a
strong binary relation in P(X) in case p satisfies each of the following conditions:

1. If A; p Bj for any ¢ € {1,...,m} and for any j € {1,...,n}, then there exists a set C' in
P(X) such that A; p C and C p Bj for any ¢ € {1,...,m} and any j € {1,...,n}.

2. If AC B, then A j B.
3. If A p B, then F,(A) C B and A C Gs(B).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2]
as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if {x € X : f(z) < £} C
A(f,0) C{z e X : f(z) < {} for a real number ¢, then A(f,¥) is a lower indefinite cut set in the
domain of f at the level /.

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F,-kernel
of sets in X are Fy— sets , with g < f. If there exists a strong binary relation p on the power
set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g
at the level t for each rational number t such that if t1 < to then A(f,t1) p A(g,t2), then there
exists a Baire-.5 function h defined on X such that g < h < f.

Proof. Let g and f be real-valued functions defined on the X such that g < f. By hypothesis
there exists a strong binary relation p on the power set of X and there exist lower indefinite cut
sets A(f,t) and A(g,t) in the domain of f and g at the level ¢ for each rational number ¢ such
that if 1 < t9 then A(f, tl) p A(g,tg).

Define functions F' and G mapping the rational numbers Q into the power set of X by
F(t) = A(f,t) and G(t) = A(g,t). If t; and to are any elements of Q with ¢; < to, then
F(t1) p F(t2),G(t1) p G(t2), and F(t1) p G(t2). By Lemmas 1 and 2 of [14] it follows that there
exists a function H mapping Q into the power set of X such that if ¢t; and ¢5 are any rational
numbers with ¢t < to, then F(t1) p H(t2), H(t1) p H(t2) and H(t1) p G(t2).

For any = in X, let h(x) = inf{t € Q: z € H(t)}. We first verify that ¢ < h < f: If z is in
H(t) then z is in G(¢') for any t' > t; since z in G(t') = A(g, ') implies that g(x) < ¢, it follows
that g(z) < t. Hence g < h. If x is not in H(t), then x is not in F(t') for any t' < ¢; since z is
not in F(t') = A(f,t') implies that f(z) > t', it follows that f(x) > ¢. Hence h < f.

Also, for any rational numbers t; and to with t; < to, we have

B (4, t) = Gs(H(ta)) \ Fy (H(11)).

Hence h=1(t1,t2) is a Gs-set in X, i.e., h is a Baire-.5 function on X. O
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The above proof used the technique of Theorem 1 of [13].

Theorem 2.2. Let P, and P, be B — .5-property and X be a space that satisfies the weak B — .5-
insertion property for (Py, Py). Also assume that g and f are functions on X such that g < f, g
has property Py and f has property Py. The space X has the B — .5-insertion property for (P, Pa)
if and only if there exist lower cut sets A(f — g,37"*1) and there exists a decreasing sequence
{D,} of subsets of X with empty intersection and such that for eachn, X\ D,, and A(f—g,37"*!)
are completely separated by Baire—.5 functions.

Proof. Theorem 2.1 of [18]. O

3 Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-
.5 (resp. contra-lower semi-Baire-.5) if f~1(—oc0,t) (resp. f~1(t,+00)) is a Gs—set for any real
number ¢.

The abbreviations usc, lsc, cusB — .5 and clsB — .5 are used for upper semicontinuous, lower
semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 3.1. [13, 14]. A space X has the weak c-insertion property for (usc,lsc) if and only if
X is normal.

Before stating the consequences of Theorems 2.1 and 2.2 we suppose that X is a topological
space that F,-kernel of sets are F,-sets.

Corollary 3.1. For each pair of disjoint F,-sets Fy, Fs, there are two Gs-sets G1 and Ga such
that Iy C G, Fy C Go and G1 N Go = 0 if and only if X has the weak B — .5-insertion property
for (cusB — .5,¢lsB — .5).

Proof. Let g and f be real-valued functions defined on the X, such that f is [sBy, g is usB7, and
g < f.If a binary relation p is defined by A p B in case F,(A) C G5(B), then by hypothesis p is
a strong binary relation in the power set of X. If ¢; and t5 are any elements of Q with ¢; < o,
then

A(fit1) C{z € X : f(z) <t} C{r € X : g(z) < ta2} C A(g,t2);

since {z € X : f(z) <11} is a Fy-set and since {z € X : g(x) < t2} is a Gs-set, it follows that
F,(A(f,t1)) C G5(A(g,t2)). Hence t; < to implies that A(f,¢1) p A(g,t2). The proof follows
from Theorem 2.1.

On the other hand, let Fy and Fy are disjoint Fj,-sets. Set f = xpe and g = xp,, then f is
csB — .5, gis cusB — .5, and g < f. Thus there exists Baire-.5 function h such that g < h < f.
Set G1 ={z € X : h(z) < 3} and G2 = {z € X : h(z) > 3}, then G; and G, are disjoint G-sets
such that F; € G; and Fy C Gs. O

Remark 3.2. [23]. A space X has the weak c-insertion property for (Isc,usc) if and only if X
is extremally disconnected.

Corollary 3.2. For every G of Gs-set, Fy(G) is a Gs-set if and only if X has the weak B — .5-
insertion property for (clsB — .5, cusB — .5).
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Proof. Let g and f be real-valued functions defined on the X, such that f is clsB — .5, g is
cusB — .5, and f < g. If a binary relation p is defined by A p B in case F,(A) C G C F,(G) C
G5(B) for some Gs-set g in X, then by hypothesis and Lemma 2.1 p is a strong binary relation
in the power set of X. If ¢; and ¢, are any elements of Q with ¢; < to, then

Alg,t1) ={z € X : g(z) <t1} C{x € X : f(z) <t2} = A(f, t2);

since {z € X : g(x) < t;} is a Gs-set and since {x € X : f(x) <t} is a F,-set, by hypothesis it
follows that A(g,t1) p A(f,t2). The proof follows from Theorem 2.1.

On the other hand, Let G; and G are disjoint Gs-sets. Set f = xg, and g = xge, then f is
clsB — .5, gis cusB — .5, and f < g.

Thus there exists Baire-.5 function h such that f <h <g. Set F; ={z € X : h(z) < %} and
Fy={x € X : h(xz) > 2/3} then Fy and F, are disjoint F,-sets such that G; C F; and Gy C F;
Hence F,(Fy) N F,(Fy) = 0. O

Before starting the consequences of Theorem 2.2, we state and prove some necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:
(i) Fvery two disjoint Fy-sets of X can be separated by Gs-sets of X.

(ii) If F is a F,-set of X which is contained in a Gs-set G, then there exists a Gs-set H such
that F C H C F,(H) CG.

Proof. (i) = (ii). Suppose that F' C G, where F and G are F,-set and Gs-set of X, respectively.
Hence, G¢ is a F,-set and F NG = .
By (i) there exists two disjoint Gg-sets G1, Gy such that F C G; and G¢ C G5. But

GCC Gy = GSCQG,
and
GlﬂG2=®:>G1§G§

hence
FCG CG5C@

and since G§ is a F,-set containing G; we conclude that F,(G1) C G§, i.e.,
FCG CF,(G1) CG.

By setting H = (1, condition (i) holds.

(i) = (i). Suppose that Fy, F5 are two disjoint F,-sets of X.

This implies that F; C F§ and F¥ is a Gs-set. Hence by (i) there exists a Gs-set H such
that, Fy C H C F,(H) C FS. But

HC F,(H)= HnN(F,;(H)) =0

and
F,(H) C Fy = Fy, C (F,(H))".

Furthermore, (F,(H))¢ is a Gs-set of X. Hence Fy C H, F, C (F,(H))® and H N (F,(H))® = 0.
This means that condition (i) holds. O
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Lemma 3.2. Suppose that X is the topological space such that we can separate every two disjoint
F,—sets by Gs—sets. If Fy and Fy are two disjoint F,—sets of X, then there exists a Baire-.5
function h : X — [0,1] such that h(Fy) = {0} and h(Fy) = {1}.

Proof. Suppose Fy and F, are two disjoint F,-sets of X. Since F; N Fy = (), hence F; C F§. In
particular, since Fy is a Gs-set of X containing Fi, by Lemma 3.1, there exists a Gs-set Hy o
such that,

Fy C Hyy C Fy(Hyyo) CFy.

Note that Hy/y is a Gs-set and contains I, and Fy is a Gs-set and contains Fy,(H; /). Hence,
by Lemma 3.1, there exists Gs-sets Hy,4 and H3/4 such that,

Fy CHyyy CFy(Hyyy) € Hyjp CFo(Hy2) € Hyyy C Fy(Hgpy) C Fy.

By continuing this method for every ¢t € D, where D C [0, 1] is the set of rational numbers that
their denominators aremexponents of 2, we obtain Gs-sets H; with the property that if ¢1,t5 € D
and t; < tg, then Hy, C H;,. We define the function h on X by h(z) = inf{t : v € H,} for z ¢ F;
and h(z) =1 for x € F.

Note that for every x € X,0 < h(z) < 1, i.e.,, h maps X into [0,1]. Also, we note that for
any t € D, Fy C Hy; hence h(Fy) = {0}. Furthermore, by definition, h(Fz) = {1}. It remains
only to prove that h is a Baire-.5 function on X. For every a € R, we have if & < 0 then
{r € X:hx)<a} =0and if 0 < a then {z € X : h(z) < a} = U{H; : t < a}. Hence,
they are Gs-sets of X. Similarly, if o < 0 then {z € X : h(z) > a} = X and if 0 < « then
{r € X :h(z)>a} =U{(Fy(H:))?: t > a} hence, every of them is a Gs-set. Consequently h is
a Baire-.5 function. O

Lemma 3.3. Suppose that X is the topological space such that every two disjoint F,—sets can
be separated by Gs—sets. The following conditions are equivalent:

(i) Every countable convering of Gs-sets of X has a refinement consisting of Gs-sets such that,
for every x € X, there exists a Gg-set containing x such that it intersects only finitely many
members of the refinement.

(i1) Corresponding to every decreasing sequence {F,} of F,-sets with empty intersection there
exists a decreasing sequence {G,} of Gs-sets such that, (\,—, Gn = 0 and for every n €
N, F, C G,.

Proof. (i) = (ii). suppose that {F, } be a decreasing sequence of F,-sets with empty intersection.
Then {F¢ : n € N} is a countable covering of Gs-sets. By hypothesis (7) and Lemma 77, this
covering has a refinement {V,, : n € N} such that every V,, is a Gs-set and F,(V,,) C FS. By
setting F,, = (F,(V,,))¢, we obtain a decreasing sequence of Gs-sets with the required properties.

(ii) = (i). Now if {H, : n € N} is a countable covering of Gs-sets, we set for n € N,
F, = (U, H;)°. Then {F,} is a decreasing sequence of F,-sets with empty intersection. By
(ii) there exists a decreasing sequence {G,} consisting of Gs-sets such that, (2, G, = 0 and
for every n € N, F,, C G,,. Now we define the subsets W,, of X in the following manner:

e W is a Gs-set of X such that G C W; and F,(Wy) N F; = 0.

o Ws is a Gs—set of X such that F, (W) UGS C Wy and F,(W3) N Fy = (), and so on. (By
Lemma 3.1, W,, exists).
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Then since {G¢, : n € N} is a covering for X, hence {W),, : n € N} is a covering for X consisting
of Gs-sets. Moreover, we have

1. F,(W,) € Wyit.
2. GS CW,.
3. W, CUi, H.

Now suppose that S; = W; and for n > 2, we set S,, = W41 \ Fo(W,—1). Then since
F,(W,—1) C W, and S, D Wy,q1 \ Wy, it follows that {S, : n € N} consists of Gs-sets and
covers X. Furthermore, S; NS; # 0 if and only if | — j| < 1. Finally, consider the following sets:

Sl ﬂHl, Sl ﬂHQ
SzﬂHl, SQOHQ, SQﬂHg
S3ﬁH1, S3ﬂH2, SgﬂHg,, S3ﬂH4

and continue ad infinitum. These sets are Gs-sets, cover X and refine {H,, : n € N}. In addition,
S; N H; can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if x € X and x € S, N H,,, then S, N H,, is a Gs-set containing x that intersects
at most finitely many of sets S; N H;. Consequently, {S; N H; : i € N,j = 1,...,i+ 1} refines
{H, : n € N} such that its elements are Gs-sets, and for every point in X we can find a Gs-set
containing the point that intersects only finitely many elements of that refinement. O

Remark 3.3. [13, 14]. A space X has the c-insertion property for (usc,lsc) if and only if X is
normal and countably paracompact.

Corollary 3.3. X has the B — .5-insertion property for (cusB —.5,clsB —.5) if and only if every
two disjoint Fy-sets of X can be separated by Gs-sets, and in addition, every countable covering
of Gs-sets has a refinement that consists of Gg-sets such that, for every point of X we can find
a Ggs-set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F| and Fy are disjoint F,-sets. Since F} N Fy = (), it follows that F, C F¥.
We set f(z) =2 for z € FY, f(z) = 5 for z ¢ F{, and g = xp,. Since F; is a F,-set, and FY is
a Gs-set, therefore g is cusB — .5, f is clsB — .5 and furthermore g < f. Hence by hypothesis
there exists a Baire-.5 function h such that, g < h < f. Now by setting G; = {x € X : h(z) < 1}
and Go = {z € X : h(z) > 1}. We can say that G; and Gy are disjoint Gs-sets that contain
Fy and Fy, respectively. Now suppose that {F,} is a decreasing sequence of F,-sets with empty
intersection. Set Fy = X and define for every « € F,,\ Fy,41, f(z) = n%rl Since ("~ , Fr = 0 and
for every x € X, there exists n € N, such that, z € F,, \ Fj,41, f is well defined. Furthermore, for
every r € R, if r <0 then {x € X : f(z) > r} = X is a Gs-set and if » > 0 then by Archimedean

property of R, we can find ¢ € N such that ZJ%I < r. Now suppose that k is the least natural
number such that k%_l < r. Hence § > r and consequently, {z € X : f(z) >r} = X\ Fy is a
Gjs-set. Therefore, f is clsB — .5. By setting g = 0, we have g is cusB — .5 and g < f. Hence by
hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

By setting G,, = {z € X : h(x) < n%rl}, we have G, is a Gs-set. But for every z € F,,, we
have f(z) < n%rl and since g < h < f therefore 0 < h(z) < n%rl, ie., z € G, therefore F,, C G,

and since h > 0 it follows that ()'_; G,, = 0. Hence by Lemma 3.3, the conditions holds.
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On the other hand, since every two disjoint Fj,-sets can be separated by Gs-sets, therefore by
Corollary 3.1, X has the weak B — .5-insertion property for (cusB — .5, clsB — .5). Now suppose
that f and g are real-valued functions on X with g < f, such that, g is cusB — .5 and f is
clsB — .5. For every n € N, set

Af g3 ) ={z e X : (f —g)(x) <37}

Since g is cusB — .5, and f is clsB — .5, therefore f — g is clsB — .5. Hence A(f —¢,37""!) is a
F,-set of X. Consequently, {A(f—g,37"*1)} is a decreasing sequence of F,-sets and furthermore
since 0 < f — g, it follows that (),—; A(f — ¢,37"") = 0. Now by Lemma 3.3, there exists a
decreasing sequence {D,,} of Gs-sets such that A(f — ¢,37" ") C D, and (),—, D,, = 0. But
by Lemma 3.2, A(f — ¢,37 ") and X \ D,, of F,-sets can be completely separated by Baire-.5
functions. Hence by Theorem 2.2, there exists a Baire-.5 function h defined on X such that,
g < h < f,ie., X has the B — .5—insertion property for (cusB — .5,clsB — .5). O

Remark 3.4. [15]. A space X has the c-insertion property for (Isc,usc) iff X is extremally
disconnected and if for any decreasing sequence {G,, } of open subsets of X with empty intersection
there exists a decreasing sequence {F;,} of closed subsets of X with empty intersection such that
G, C F, for each n.

Corollary 3.4. For every G of Gs-set, F,(G) is a Gs-set and in addition for every decreasing
sequence {G,} of Gs-sets with empty intersection, there exists a decreasing sequence {F,} of
F,-sets with empty intersection such that for every n € N, G,, C F, if and only if X has the
B — .5-insertion property for (clsB — .5,cusB —.5).

Proof. Since for every G of Gs-set, F,(G) is a Gs-set, therefore by Corollary 3.2, X has the weak
B — .5-insertion property for (clsB — .5, cusB — .5). Now suppose that f and g are real-valued
functions defined on X with g < f, g is clsB —.5, and f is cusB —.5. Set A(f —¢,3 ") = {z €
X : (f —g)(z) < 37"}, Then since f — g is cusB — .5, hence {A(f — g,37""1)} is a decreasing
sequence of Gs-sets with empty intersection. By hypothesis, there exists a decreasing sequence
{D,} of F,-sets with empty intersection such that, for every n € N, A(f — g,3 ") C D,,.
Hence X \ D,, and A(f —g,37 ") are two disjoint Gs-sets and therefore by Lemma 2.1, we have

FO'(A(f - g73in+1)) mFG((X\Dn)) - @

and therefore by Lemma 3.2, X \ D,, and A(f — g,3 "*"1) are completely separable by Baire-
.5 functions. Therefore by Theorem 2.2, there exists a Baire-.5 function h on X such that,
g < h < f,ie., X has the B — .5-insertion property for (clsB — .5, cusB — .5).

On the other hand, suppose that G; and G5 be two disjoint Gs-sets. Since G; NGy = 0. We
have G C G§. We set f(z) =2 for x € GY, f(z) = 3 for z ¢ G§ and g = xq,.

Then since Gy is a Gs-set and GY is a F,-set, we conclude that ¢ is clsB — .5 and f is
cusB — .5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function A on X such
that, g < h < f. Now we set F; = {z € X : h(z) < 2} and F» = {x € X : h(z) > 1}. Then
Fy and Fy are two disjoint F,-sets contain G; and Ga, respectively. Hence F,(G1) C F; and
F,(G2) C F» and consequently F,(G1) N F,(G2) = 0. By Lemma 2.1, for every G of Gs-set, the
set F,(G) is a Gs-set.

Now suppose that {G,} is a decreasing sequence of Gs-sets with empty intersection. We
set Gop = X and f(z) = n%rl for v € Gy, \ Gpy1. Since (oo Gn = 0 and for every n € N
there exists ¢ € G, \ Gni1, f is well-defined. Furthermore, for every r € R, if r < 0 then
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{r € X : f(z) <r} =01is a Gs-set and if r > 0 then by Archimedean property of R, there
exists ¢ € N such that ZJ%I < r. Suppose that k is the least natural number with this property.
Hence ; > r. Now if k%rl < rthen {z € X : f(x) < r} = Gy is a Gs-set and if %ﬂ = 1 then
{r € X: f(z) <r} =Gy is a Gs-set. Hence f is a cusB — .5 on X. By setting g = 0, we have
conclude that ¢ is cIlsB — .5 on X and in addition g < f. By hypothesis there exists a Baire-.5
function h on X suvh that, g < h < f.

Set F, = {zr € X : h(z) < n%_l} This set is a F,-set. But for every z € G, we have
f(z) < - and since g < h < f thus h(z) < —1=, this means that = € F, and consequently

n+1 m»
G, CF,.
By definition of F),,{F,} is a decreasing sequence of F,-sets and since h > 0, (2, F,, = 0.
Thus the conditions holds. O
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