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Abstract

The main goal of this paper is to introduce and study a new type of contra continuity
called contra e*f-continuity. Also, we obtain fundamental properties and several characte-
rizations of contra e*f#-continuous functions via e*-6-closed sets which are defined by Farhan
and Yang [11]. Moreover, we investigate the relationships between contra e*f-continuous
functions and other related generalized forms of contra continuity.

Key words and phrases: e*-0-open set, e*-0-closed set, contra e*@-continuity, e*6-
continuity, contra e*f-closed graph.

Resumen

El objetivo principal de este documento es presentar y estudiar un nuevo tipo de contra
continuidad llamada contra e*6-continuidad. Ademés, obtenemos propiedades fundamentales
y varias caracterizaciones de funciones contra e*f-continuas a través de conjuntos e*-6 cerra-
dos que estan definidos por Farhan y Yang [11]. Ademaés, investigamos las relaciones entre
las funciones contra continuas y otras formas generalizadas relacionadas de e*6-continuidad
de contra.

Palabras y frases clave: e*-0-conjunto abierto, e*-6-conjunto cerrado, contra e*6-
continuidad, e*f#-continuidad, contra e*f-grafico cerrado.

1 Introduction

In 1996, the concept of contra continuity [6], which is stronger than contra a-continuity [12], con-
tra precontinuity [13], contra semicontinuity [7], contra b-continuity [17], contra S-continuity [5],
is defined by Dontchev. Many results have been obtained related to the notions mentioned above
recently. In this paper, we define and study the notion of contra e*f-continuity which is stronger
than contra e*-continuity [10] and weaker than contra S6-continuity [4]. Also, we obtain sev-
eral characterizations of contra e*#-continuous functions and investigate their some fundamental
properties. Moreover, we investigate the relationships between contra e*#-continuous functions
and seperation axioms and contra e*f-closedness of graphs of functions.
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2 Preliminaries

Throughout this present paper, X and Y represent topological spaces. For a subset A of a space
X, cl(A) and int(A) denote the closure of A and the interior of A, respectively. The family of all
closed (resp. open, clopen) sets of X is denoted C'(X)(resp. O(X),CO(X)). A subset A is said to
be regular open [23] (resp. regular closed [23]) if A = int(cl(A)) (resp. A = cl(int(A))). A point
x € X is said to be d-cluster point [24] of A if int(cl(U)) N A # 0 for each open neighbourhood U
of z. The set of all d-cluster points of A is called the d-closure [24] of A and is denoted by cls(A).
If A=cls(A), then A is called §-closed [24], and the complement of a d-closed set is called d-open
[24]. The set {z|(U € O(X,x))(int(cl(U)) € A)} is called the d-interior of A and is denoted by
ints(A).

A subset A is called a-open [18] (resp. semiopen [14], preopen [15], b-open [2], S-open [1],
e-open [8], e*-open [9]) if A C int(cl(int(A))) (resp. A C cl(int(A)), A C int(cl(A)), A C
int(cls(A)), A C c(int(A)) Uint(cl(A)), A C cl(int(cl(A))), A C cl(ints(A)) Uint(cls(A)), A
C cl(int(cls(A)))). The complement of an a-open (resp. semiopen, preopen, b-open, 3-open, e-
open, e*-open) set is called a-closed [18] (resp. semiclosed [14], preclosed [15], b-closed [2], 8-open
[1], e-closed [8], e*-closed [9]). The intersection of all e*-closed (resp. semi-closed, pre-closed) sets
of X containing A is called the e*-closure [9] (resp. semi-closure [14], pre-closure [15]) of A and is
denoted by e*-cl(A) (resp. scl(A), pcl(A)). The union of all e*-open (resp. semiopen, preopen)
sets of X contained in A is called the e*-interior [9] (resp. semi-interior [14], pre-interior [15]) of
A and is denoted by e*-int(A) (resp. sint(A), pint(A)).

The union of all e*-open sets of X contained in A is called the e*-interior [9] of A and is
denoted by e*-int(A). A subset A is said to be e*-regular [11] if it is e*-open and e*-closed. The
family of all e*-regular subsets of X is denoted by e*R(X).

A point z of X is called an e*-f-cluster (3-6-cluster) point of A if e*-cl(U) N A # 0 for every
e*-open (resp. B-open) set U containing z. The set of all e*-6-cluster (8-6-cluster) points of A
is called the e*-0-closure [11] (3-6-closure [19]) of A and is denoted by e*-clg(A) (B-clg(A)). A
subset A is said to be e*-6-closed [11] (5-6-closed [19]) if A = e*-clg(A) (A = S-clp(A)). The
complement of an e*-6-closed (/5-0-closed) set is called an e*-6-open [11] (5-6-open [19]) set. A
point = of X is said to be an e*-f-interior [11] (8-6-interior [19]) point of a subset A, denoted
by e*-intg(A) (B-intg(A)), if there exists an e*-open (S-open) set U of X containing x such that
e*-cl(U) C A (B-cl(U) C A). Also it is noted in [11] that

e*-regular = e*-f-open = e*-open.

The family of all open (resp. closed, e*-f-open, e*-6-closed, e*-open, e*-closed, regular
open, regular closed, d§-open, d-closed, semiopen, semiclosed, preopen, preclosed) subsets of
X is denoted by O(X) (resp. C(X), e*00(X), e*0C(X), ¢*O(X), e*C(X), RO(X), RC(X),
00(X), 6C(X), SO(X), SC(X), PO(X), PC(X)). The family of all open (resp. closed, e*-6-
open, e*-f-closed, e*-open, e*-closed, regular open, regular closed, §-open, §-closed, semiopen,
semiclosed, preopen, preclosed) sets of X containing a point z of X is denoted by O(X,z)
(resp. C(X,x), e*00(X,x), e*0C(X,x), e*O(X,x), e*C(X,z), RO(X,x), RC(X,x), §O(X,x),
0C(X,x), SO(X,x), SC(X,x), PO(X,z), PC(X,x)).

We shall use the well-known accepted language almost in the whole of the proofs of the
theorems in this article. The following basic properties of e*-closure and e*-interior are useful in
the sequel:

Lemma 2.1. [9] Let A be a subset of a space X, then the following hold:
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(1) e*-cl(X \ A) = X \ e*-int(A).
(2) x € e*-cl(A) if and only if ANU # 0 for every U € e*O(X, z).
(3) A is e*C(X) if and only if A = ¢*-cl(A).

(4) e*-cl(A) € e*C(X).

(5) e*-int(A) = AN cl(int(cls(A))).

Lemma 2.2. [11] For the e*0-closure of a subset A of a topological space X, the following
properties are hold:

(1) ACe*-cl(A) Ce*-clp(A).
(2) If A € e*00(X), then e*-cly(A) = e*-cl(A).
(3) If A C B, then e*-clg(A) C e*-cly(B).
(4) e*-clg(A) € e*0C(X) and e*-clg(e*-clg(A)) = e*- clp(A).
(5) If Ay € e*0C(X) for each o € A, then N{Aq|a € A} € e*0C(X).
(6) If Ay € €*00(X) for each o € A, then |J{As|a € A} € e*00(X).
(7) e*-clg(X \ A) = X \ e*-intg(A).
(8) e*-clg(A) = {U|(ACU)(U € e*0C(X))}.
(9) A€ e*O(X), then e*-clg(A) € e*R(X).
(10) A € e*R(X) if and only if A € e*00(X) N e*0C(X).

Lemma 2.3. Let A be a subset of a topological space X and x € X. The point v of X is an
e*-0-cluster point of A if and only if UN A # O for all e*-0-open U containing x.

Proof. Let x ¢ e*-clg(A).

x ¢ e*-clg(A) U e€e*C(X)(ACU)(x ¢ U)
F\U € e00(X))(\U C\A)(z € \U)
IV :=\U € ¢"00(X,z))(V C\A)
IV eeO(X,2)(VNA
(X,

x ¢ {z|(VU € e*60 DU =0} O

Definition 2.1. A function f : X — Y is said to be contra continuous [6] (resp. contra a-
continuous [12], contra precontinuous [13], contra semicontinuous [7], contra b-continuous [17],
contra SB-continuous [5], contra 36-continuous [4], contra e*-continuous [10]) if f~1[V] is closed
(resp. a-closed, preclosed, semiclosed, b-closed, S-closed, 3-6-closed, e*-closed) in X for every
open set V in Y.

C
\U

A~ Y~~~

e
I

Definition 2.2. Let A be a subset of a space X. The intersection of all open sets in X containing
A is called the kernel of A [16] and is denoted by ker(A).
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Lemma 2.4. [16] The following properties hold for subsets A and B of a space X.
(1) = € ker(A) if and only if ANF #0 for any F € C(X,z).
(2) AC ker(A).
(3) If A is open in X, then A = ker(A).

(4) If A C B, then ker(A) C ker(B).

3 Contra e*f-continuous functions

Definition 3.1. A function f : X — Y is said to be contra e*#-continuous (briefly c.e*f.c.) if
f71[V] is e*-f-closed in X for every open set V of Y.

Theorem 3.1. For a function f : X — Y, the following properties are equivalent:
(1) f is contra e*6-continuous;
(2) The inverse image of every closed set of Y is e*-0-open in X ;

(8) For each point x € X and each and each V € C(Y, f(x)), there exists U € e*00(X, ) such
that £ U] C V;

(4) fle*-clo(A)] C ker(f[A]) for every subset A of X;
(5) e*-clg(f1[B])] C f~tker(B)] for every subset B of Y.

Proof.
(1)=(2): Let V € C(Y).

Ve SV EOU s\ = e oo = £ V] € 00(x)

(2)=3):Let x € X and V € C(Y, f(x)).

(x e X)(V ey, f(x)))

) -1 *
D= ST = w e croanv e v

(3)=(4): Let AC X and = ¢ f~[ker(f[A))].

x @ [T ker(fIAD] = f(2) ¢ ker(f[A]) = (F € C(Y, f(2)))(F N flA] = g) } N

= (U € e"00(X, x))(f[U] € F)(F' N fIA] =0)
= (U € e"00(X, ) (f[U N A] € fU]N fIA] = 0)
= (AU € e*0O(X,2))(UN A =10)

= x ¢ e*-cly(A).
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(4)= (5) : Let BC Y.
BEY = ITBIE S o a7 B € kers 17 BI) € her(B) =
= ey [B) € 17 fker(B)].
(5) = (1) : Let V € O(Y).
Veo()
)

Remark 3.1. From Definitions 3.1 and 2.1, we have the following diagram. None of these impli-
cations is reversible as shown by the following example:

} = e cp(fHV) C fker(V)) = fH V] = fHV] €et0C(X). O

c.p.c. c.B.c. <« c.pb.c.
/ hN /
c.a.c. 4+  c.C. c.b.c. + 1
N\ / N\
c.s.c. ce.c. <+ c.eb.c.

Notation 3.1. c.c.=contra continuity, c.a.c.=contra a-continuity, c.p.c.=contra precontinuity,
c.s.c.=contra semicontinuity, c.b.c.=contra b-continuity, c.3.c.= contra S-continuity, c.e*.c.=contra
e*-continuity, c.46.c.=contra (#-continuity, c.e*f.c.=contra e*f#-continuity.

Example 3.1. Let X = {a,b,c,d} and 7 = {0, X, {a}, {b},{a,b},{a,c}, {a,b,c},
{a,b,d}}. It is not difficult to see that

e*00(X) = e*O(X) = 25\ {{d}} and BOC(X) = {0, X, {a,c,d}, {b,d}, {a,c}, {c}, {d}}.

Define the function f : X — X by f = {(a,c),(b,b),(c,a),(d,b)}. Then [ is contra e*6-
continuous but it is not contra B0-continuous.

Other examples can be found related articles.
Definition 3.2. A function f: X — Y is said to be:
a) e*f-semiopen if f[U] € SO(Y) for every e*-0-open set U of X.
b) contra I(e*8)-continuous if for each x in X and each V € C(Y, f(z)), there exists U €
e*00(X, z) such that int(f [U]) C V.
¢) e*f-continuous [11] if f~1[V] is e*f-closed in X for every closed set V of Y.
d) e*-continuous [9] if f~1[V] is e*-closed in X for every closed set V of Y.

Theorem 3.2. Let f : X — Y be a function. If [ is contra I(e*0)-continuous and e*0-semiopen,
then f is contra e*0-continuous.

Proof. Let zx € X and V € C(Y, f(x)).

(z € X)(V € O, f()))
f is contra I(e*0)-continuous

} = (U € e*00(X, ) (int(f[U]) CV =cl(V)) } N
f is e*f#-semiopen
= (U € e*00(X, z))(f[U] € SO(Y))(int(f[U]) CV =cl(V))
= (U € e*00(X,2))(f[U] C c(int(f[U])) C V). O
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Theorem 3.3. Let f : X — Y be a function. If f is contra e*0-continuous and Y is reqular,
then f is e*0-continuous.

Proof. Let x € X and V € O(Y, f(x)).

(z € X)(V € O, f(x))) } = (@W € O(Y, f(2)))((W) C V) }

Y'is regular f is contra e*f-continuous
= (U € e*00(X,z))(f[U] Cd(W)C V). O

Theorem 3.4. Let {X,|a € A} be any family of topological spaces. If a function f: X — 11X,
is a contra e*0-continuous function, then Pry o f : X — X, is contra e*0-continuous for each
a € A, where Pry is the projection of 11X, onto X,.

Proof. Let a € A and U, € RO(X,).

o € A = Pr, is continuous }

U, € 0(X,) [~ Fra'lla € OLX,) }

fisc.e*f.c.
= (Pro o )7 HUL] = fYPr UL € e*0C(X). O

Definition 3.3. A function f : X — Y is called weakly e*-irresolute [20] (resp. strongly e*-
irresolute [20]) if f~1[A] is e*-f-open in X (resp. e*-f-open) for every e*-f-open (resp. e*-open)
set Aof Y.

Theorem 3.5. Let f: X Y andg:Y — Z and go f : X — Z functions. Then the following
properties hold:

(1) If f is contra e*0-continuous and g is continuous, then g o f is contra e¢*0-continuous.
(2) If f is e*0-continuous and g is contra-continuous, then g o f is contra e*0-continuous.
(8) If f is contra e*0-continuous and g is contra-continuous, then g o f is e*0-continuous.

(4) If [ is weakly e*-irresolute and g is contra e*6-continuous, then g o f is contra €*6-
continuous.

(5) If f is strongly e*-irresolute and g is contra e*-continuous, then g o f is contra €*6-
continuous.

Proof. Straightforward. [

4 Some fundamental properties of contra e*6-continuous func-
tions
Definition 4.1. A topological space X is said to be:

a) e*6-Tp [3] if for any distinct pair of points « and y in X, there is an e*#-open set U in X
containing = but not y or an e*#-open set V' in X containing y but not z.
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b) e*#-T; [3] if for any distinct pair of points z and y in X, there is an e*f-open set U in X
containing = but not y and an e*@-open set V in X containing y but not x.

c) €*0-Ty [3] (resp. e*-Ty [10]) if for every pair of distinct points z and y, there exist two
e*f-open (resp. e*-open) sets U and V such that x e U, y € Vand U NV = 0.

Lemma 4.1. [3] For a topological space X, the following properties are equivalent:
(1) (X,7
(2) (X,7
(3) (X,7

(4) (X, 1) is e*-Ty.

is e*0-T}.
is e*0-T7.

)
)

,T) 18 €*0-T5.
)

(5) For every pair of distinct points x,y € X, there exist U € e*O(X,x) and V € e*O(X,y)
such that e*-cl(U) Ne*-cl(V) = 0.

(6) For every pair of distinct points x,y € X, there exist U € e*R(X,z) and V € e*R(X,y)
such that UNV = {.

(7) For every pair of distinct points x,y € X, there exist U € e*00(X,z) and V € e*00(X,y)
such that e*-clo(U) Ne*-clg(V) = 0.

Theorem 4.1. A topological space X is e*0-T5 if and only if the singletons are e*-0-closed sets.

Proof. Necessity. Let x € X and X is e*0-T.

v {";”(} :eff:rz } = (AU, € e*00(X,y))(3V, € e*00(X,z))(U, NV, = )
= (AU, € e*00(X,y))(z ¢ U,) } N
A= {Uyly ¢ {z} = (U, € *00(X,y))(z ¢ U,)} C e*00(X)
= X\ {z} = JA €€ 00(X) = {a} € e*0C(X).

Sufficiency. Suppose that {z} is e*-0-closed for every © € X. Let z,y € X with = # y.

xe ;iy{j}yeeefgéé{;})‘ } = X\ {z} € e"00(X,y).

Then X is e*0-Ty. On the other hand, the notions of e*6-T and e*0-T; are equivalent from
Lemma 4.1. Thus X is e*0-Ty. O

Theorem 4.2. If f is a contra e*0-continuous injection of a topological space X into a Urysohn
space Y, then X is e*0-T5.

Proof. Let x1,22 € X and x1 # zo.

f is injective ¥ is Urysohn

1 # T };s fla) # flxz) };s
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= (U € O(Y,11))(3V € O(Y, 1)) (cl(U) N el(V)) = ) } N
fisce*f.c. at z1 and o

= (34 € e*00(X,x1))(3B € e*00(X, z2))(f[A] N f[B] C (U) Nel(V) =0)
= (A € e*00(X,x1))(3B € e*00(X,22)) (AN B =10). O
Definition 4.2. A topological space X is said to be:

a) Weakly Hausdorff [21] (briefly weakly-T5) if every point of X is an intersection of regularly
closed sets of X.

b) Ultra Hausdorff [22] if for each pair of distinct points  and y in X, there exist clopen sets
U and V containing x and y, respectively such that U NV = ().

Theorem 4.3. Let f: X =Y be a function. Then the following properties are hold:

(1) If f is a contra e*0-continuous injection and Y is Ty, then X is e*0-Ts.

(2) If f is a contra e*0-continuous injection and Y is Ulira Hausdorff, then X is e*0-T.
Proof. (1) Let x1,x2 € X and x1 # xo.

(.%‘1,.132 S X)(J?l 75 1‘2)
f is injective

f= e ) -

= [FV € O(Y, f(21)))(f(x2) € V)V (BU € O, f(x2)))(f(z1) € U)]
= (f(z1) Y\ V)Y\V € C(Y, f(22)))

fisc.e*f.c.

Therefore X is e*6-Ty and by Theorem 4.1 X is e*0-T5.
(2) Tt is not difficult to see that this item is immediate consequence of (1) by Lemma 4.1. [

} = I ¢ fﬁl[Y \ V] (S 6*9O(X7$2).

Definition 4.3. A space X is said to be:

a) e*@-connected if X cannot be expressed as the disjoint union of two non-empty e*-6-open
sets.

b) e*@-normal if for each pair of non-empty disjoint closed sets can be separated by disjoint
e*-f-open sets.

Theorem 4.4. If f : X — Y is a contra e*0-continuous surjection and X is e*6-connected, then
Y is connected.

Proof. Suppose that Y is not connected.
Y is not connected = (3U1,U2 € OY)\{0})(U1 NU2 =0)(U1 VT, =Y)

= U,,U; € CO(Y) -
f is c.e*f.c. surjection

= (f UL, fHU2] € e 00(X)\ DY (fHU N fH U] = 0)(fHUA U £ U] = X).

This is a contradiction to the fact that X is e*#-connected. [
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Theorem 4.5. If f : X — Y is a contra e*0-continuous closed injection and Y is normal, then
X is e*0-normal.

Proof. Let Fy,Fy € C(X) and Fy N Fy = ().

(FhFQEC(X))(Fl ﬂFQZ(Z)) N
f is closed injection

Y is normal

= (f[F] f[F2] € CY))(f[FL N Fo] = fIF] N fIF2] = 0) } N

= (IV1, Vo € O(Y))(f[F1] S VA)(f[F2) C Va)(ViNVa =10) } N
Y is normal

= (3G1, G € O(Y))(fIF1] € Gr C cl(Gy) € Vi) (fIF>] € G C cl(Ga) € Va)(Vi Vs = 0) } _
f is c.e*f.c.

= (f7Hel(GY)], fHel(G2)] € e*00(X))(F1 € fHel(G))(Fz € £~ cl(G2)])
(fHl(GOIN fHel(Go)] = 0). O

Definition 4.4. A function f : X — Y has a contra e*6-closed graph if for each (z,y) ¢ G(f),
there exist U € e*00(X,x) and V € C(Y,y) such that (U x V)N G(f) = 0.

Lemma 4.2. The graph G(f) of a function f: X — Y is contra e*0-closed in X xY if and only
if for each (z,y) ¢ G(f), there exist U € e*00(X,z) and V € C(Y,y) such that flUINV = 0.

Proof. Straightforward. [

Theorem 4.6. If f : X — Y is contra e*0-continuous and Y is Urysohn, then f has a contra
e*0-closed graph.

Proof. Let (z,y) ¢ G(f).
(x,y) ¢ G(f) =y # f(x) } N
Y is Urysohn

= BV € O JENEW € OWp) (V) 1l(W) =0 } .
= (3U € e*00(X, 2))(f[U] C cl(V))(cl(V) N el (W) = 0)
= (AU € e*00(X, ) (f[U]NW C fU]N (W) =0). O

Theorem 4.7. Let f : X — Y be a function and g : X — X x Y the graph function of f,
defined by g(x) = (z, f(x)) for every x € X. If g is contra e*0-continuous, then f is contra
e*0-continuous.

Proof. Let V € O(Y).

VeOV)=XxVeOXxY)

g is c.e*f.c. } = [TV =g X xV]ee90(X). O

Theorem 4.8. If f : X — Y has a contra e¢*0-closed graph and injective, then X is e*0-T}.
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Proof. Let x1,z2 € X and 21 # 4.

(rioes € n 7o) § = Flon) # fae2) = (@, 1(0) ¢ GU) e

J 1s injective G(f) is contra e*#-closed
= (U € e"00(X, 21))(IV € O(Y, f(z2)))(fU] NV =)
= (U € e*00(X,21))(3V € O, f(z2)))(U N f7LV] = 0)
= (U € e*00(X,x1))(z2 ¢ U)

Then X is e*#-Ty. On the other hand, the notions of e*6-T and e*6-T} are equivalent from
Lemma 4.1. Thus X is e*0-Ty. O

Definition 4.5. A topological space X is said to be:
a) Strongly S-closed [6] if every closed cover of X has a finite subcover.
b) Strongly e*0C-compact [3] if every e*-f-closed cover of X has a finite subcover.
c) e*f-compact if every e*-6-open cover of X has a finite subcover.

d) e*f-space if every e*-0-closed set is closed.

Theorem 4.9. If f : X — Y has a contra e*0-closed graph and X is an e*0-space, then f~'[K]
is closed in X for every strongly S-closed subset K of Y.

Proof. Let K is strongly S-closed in Y and let = ¢ f~![K].

x ¢ [THK] = f(z) ¢ K= (Y € K)(y # f(2) = (2,y) ¢ G(f) } N
G(f) is e*6-closed
= (U, € e*00(X,x))(IV, € C(Y,y))

f[Uy]mVy:@)
A: }:>

(
{KNVyly e K}

= (ACCY))(K=UA)

K is strongly S-closed in YV } = GAT C (A" <Ro)(K CUA) } X is e gspace

U :=n{U,|U, € A*}

= U cOoX,2))(flUINK =0) = (UcOX,2))(Un fK]=0) =
= (U eOoX,2)(UC\fK]) =z cint(X\ fK])=z e X\cd(f K] =z ¢d(f K.
O

Theorem 4.10. If f : X — Y is a contra e*0-continuous surjection and X is strongly e*0C-
compact, then Y is compact.

Proof. Let BCO(Y)and Y =JB.

(Bco)Y=UB) | _ (A:={f"Y[B]|Be B} Ce0C(X))(X =JA
[is c.e"f.c. } vl X i}; ;crongly e’ng—comLIJ)ac‘z }

= (3A* C A)(JA*| < No)(X =[JA")

f is surjective

} = (B = {fIA]|A € A%} € B)(B*| < No)(¥ = UB").
O
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Theorem 4.11. Let f: X — Y be a function. Then the following properties are hold:
(1) If f is a contra e*0-continuous surjection and X is e*0-compact, then 'Y is strongly S-closed.

(2) If f is a contra e*f-continuous surjection and X is e*0-compact and e*0-space, then Y is
strongly e*0C-compact.

Proof. (1) Let BCC(Y) and Y =JB.

BT TSR b = (A= 1 1B)B € BY € 0000 (X =U A
fiscetfe. X is e*f-compact }
= (3A" S A)(JAT| <Ro)(X = A7) }
f is surjective
= (B" :={[f[A]lA € A"} C B)(IB"| <Ro)(Y =UB")
(2) Let BC e*0C(Y) and Y = B.

(B C e*6C(Y))(Y = UB) }

X is e*f-space

= (BCOY)UB=Y) } ~

fisc.e*f.c.

O

Theorem 4.12. If f : X — Y is a weakly e*-irresolute surjection and X is strongly e*0C-
compact, then Y is strongly e*0C'-compact.

Proof. Let BC e*0C(Y) and Y = |JB.

(B erbe))(¥ =JB) } (A= {f'[B]|B € B} C e*0C(X))(X = U A) }

f is weakly e*-irresolute X is strongly e*0C-compact

= (3A" C A)(JAT| < Ro)(X = JA") }

f is surjective
= (B":={f[A]|[A e A} C B)(IB"| <No)(Y =UB"). O

We recall that the product space X = X7 x ... x X,, has property Pe.«y [3] if A; is an e*0-open
set in a topological space X; for i = 1,2,...n, then Ay x ... x A, is also e*#-open in the product
space X = X1 X ... x X,.

Theorem 4.13. Let f: X7 =Y and g: Xo — Y be two functions, where
(i) X = X1 X X5 has the property Peg,
(ii) Y is a Urysohn space,

(iii) [ and g are contra e*0-continuous,
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then {(x1,22)|f(x1) = g(x2)} is e*0-closed in the product space X = X7 x Xs.

Proof. Let (z1,x2) ¢ A = {(z1,22)|f(z1) = g(z2)}.

(@1,22) ¢ A= f(z1) # g(x2) | _
Y is Urysohn

= (31 € O(Y, f(21)))(FV2 € O(Y, g(x2)))(cl(V1) N cl(V2) = D) (cl(V1), cl(V2) € RO(Y)) } N

f and g are c.e*f.c.

= (f (V1)) € e*00(X1,21)) (g7 cl(V2)] € e*00 (X2, 22)) N
X = X7 x X5 has the Property P.«g

= (21, 22) € fTH(V1)] x g7 [el(Va)] € €"00(Xy1 x Xa))(f 7 el(V1)] x g7 [cl(V2)] € \A) =

5

= \A € 6*90(X1 X X2> = A€ 6*90(X1 X XQ)
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