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A proof of a version of Hensel’s lemma
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Abstract

By using a few basic facts, a proof of a known version of Hensel’s lemma in the context
of local rings is presented.
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Resumen

Usando algunos pocos hechos básicos, se presenta una demostración de una versión del
lema de Hensel en el contexto de los anillos locales.
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1 Introduction

A classical and fundamental result, known as Hensel’s lemma, is discussed in [1], [3], [5], [6] and
[7], for instance. A quite general form of Hensel’s lemma may be found in Chapter III of [2],
although special cases of it may also be very important, as the one valid in the framework of local
rings and presented in Chapter II of [6]. The main purpose of this note is to offer an elementary
proof of the last-mentioned form of Hensel’s lemma, as well as to derive a few consequences of it.

2 A proof of a version of Hensel’s lemma

Definition 2.1 (cf. [2, p. 80]). A commutative ring R with and identity element 1 6= 0 is said to
be a local ring if it contains a unique maximal ideal I1 , namely, the set of non-invertible elements
of R. If K is the quotient ring R/I1 , which is a field,

λ ∈ R 7−→ λ̄ ∈ K

will denote the canonical surjection. For f(X) = a0 + a1X + · · ·+ anX
n ∈ R[X], we will write

f̄(X) = ā0 + ā1X + · · ·+ ānX
n ∈ K[X].
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Example 2.1 (cf. [6]). Let R be a discrete valuation ring and I1 the maximal ideal of R, which
may be written as I1 = π R. We have that

I1 = π R ⊃ I2 = π2R ⊃ · · · ⊃ In = πnR ⊃ In+1 = πn+1R ⊃ ....

is a decreasing sequence of ideals of R such that In I1 ⊂ In+1 for each integer n ≥ 1 and⋂
n≥1

In = {0}.

Example 2.2 (cf. [3]). Let K be a field endowed with a non-trivial discrete valuation | · |,
R = {λ ∈ R; |λ| ≤ 1} the ring of integers of (K, | · |) and I1 = {λ ∈ R; |λ| < 1} the maximal ideal
of R. Let µ ∈ I1 be such that |µ| = sup{|λ|; λ ∈ I1}. Then

I1 = µR ⊃ I2 = µ2R ⊃ · · · ⊃ In = µnR ⊃ In+1 = µn+1R ⊃ ....

is a decreasing sequence of ideals of R such that In I1 ⊂ In+1 for each integer n ≥ 1 and⋂
n≥1

In = {0}.

It may be seen that every discrete valuation ring may be regarded as the ring of integers of a
field endowed with a non-trivial discrete valuation.

Let us recall that, if X is a non-empty set, a mapping

d : X ×X −→ R+

is an ultrametric on X if the following conditions hold for all x, y, z ∈ X:

(a) d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x);

(c) d(x, y) ≤ max{d(x, z), d(z, y)}.

By induction,
d(x1, xn) ≤ max{d(x1, x2), . . . , d(xn−1, xn)}

for n = 2, 3, . . . and x1, . . . , xn ∈ X. And, since max{d(x, z), d(z, y)} ≤ d(x, z) + d(z, y), d is a
metric on X.

We shall present an elementary proof of the following form of Hensel’s lemma [6, p. 43]:

Proposition 2.1. Let R be a local ring and I1 its maximal ideal, and assume the existence of a
decreasing sequence I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 ⊃ .... of ideals of R such that In I1 ⊂ In+1 for
each integer n ≥ 1 and

⋂
n≥1

In = {0}. Then there exists a translation-invariant ultrametric d on

R such that In =
{
λ ∈ R; d(λ, 0) ≤ 1

2n
}

for each integer n ≥ 1 (thus (In) n ≥ 1 is a fundamental

system of neighborhoods of 0 in R with respect to the topology defined by d ) and the mappings

(λ, µ) ∈ R×R 7−→ λ+ µ ∈ R and (λ, µ) ∈ R×R 7−→ λµ ∈ R

are continuous. Moreover, if the metric space (R, d) is complete and if f(X) ∈ R[X] is such
that f̄(X) admits a simple root θ in K, then there exists a unique root λ of f(X) in R such that
λ̄ = θ.
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In order to prove Proposition 2.1 we shall need an auxiliary result:

Lemma 2.1. Let (G,+) be a commutative group and H1 ⊃ H2 ⊃ · · · ⊃ Hn ⊃ Hn+1 ⊃ · · · a
decreasing sequence of subgroups of G such that

⋂
n≥1

Hn = {0}. Then there exists a translation-

invariant ultrametric d on G such that Hn =
{
x ∈ G; d(x, 0) ≤ 1

2n
}

for each integer n ≥ 1

(thus (Hn) n ≥ 1 is a fundamental system of neighborhoods of 0 in G with respect to the topology
defined by d ) and the mapping

(x, y) ∈ G×G 7−→ x+ y ∈ G

is continuous.

Proof of Lemma 2.1. We shall use a classical argument. Put H0 = G and let g : G → R+ be

the mapping given by g(0) = 0 and g(x) =
1

2n
if x ∈ Hn\Hn+1 (n = 0, 1, 2, . . . ). Obviously,

g(x) > 0 if g ∈ G\{0}, g(−x) = g(x) if x ∈ G and

Hn =

{
x ∈ G; g(x) ≤ 1

2n

}
for n = 0, 1, 2, . . . . Moreover, g(x+y) ≤ max{g(x), g(y)} for all x, y ∈ G, which is clear if x = 0 or

y = 0. Indeed, if x, y ∈ G\{0}, x ∈ Hk\Hk+1 , y ∈ H`\H`+1 , with ` ≥ k ≥ 0, then g(x) =
1

2k
and

g(y) =
1

2`
≤ 1

2k
· But, since H` ⊂ Hk ,x+ y ∈ Hk , and hence g(x+ y) ≤ 1

2k
= max{g(x), g(y)}.

Therefore the mapping
d : G×G −→ R+ ,

defined by d(x, y) = g(x− y), is a translation-invariant ultrametric on G such that

Hn =

{
t ∈ G; d(t, 0) ≤ 1

2n

}
for each integer n ≥ 0. Consequently,

x+Hn =

{
t ∈ G; d(t, x) ≤ 1

2n

}
if x ∈ G and n = 0, 1, 2, . . . are arbitrary.

Finally, if x0, y0 ∈ G and n = 0, 1, 2, . . . are arbitrary,

(x0 +Hn) + (y0 +Hn) ⊂ (x0 + y0) +Hn ,

proving the continuity of the mapping

(x, y) ∈ G×G 7−→ x+ y ∈ G

at (x0, y0).

Now, let us turn to the
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Proof of Proposition 2.1. By Lemma 2.1 there is a translation-invariant ultrametric d on R
such that

In =

{
λ ∈ R; d(λ, 0) ≤ 1

2n

}
for each integer n ≥ 1, and the operation of addition in R is continuous. Moreover, if (λ0, µ0) ∈
R×R and n = 1, 2, . . . are arbitrary, the relations λ ∈ λ0 + In , µ ∈ µ0 + In imply

λµ− λ0µ0 = λµ− λ0µ+ λ0µ− λ0µ0 = µ(λ− λ0) + λ0(µ− µ0) ∈ In + In ⊂ In ,

proving the continuity of the mapping

(λ, µ) ∈ R×R 7−→ λµ ∈ R

at (λ0, µ0).
Now, assume that (R, d) is complete and let f(X), f̄(X),λ, θ be as in the statement of the

proposition. In order to conclude the proof we shall apply Newton’s approximation method, as
in p. 44 of [6]. Let us first observe that, if h(X) ∈ R[X] and γ ∈ R, then h(γ) = h̄(γ̄).

To prove the uniqueness, assume the existence of a µ ∈ R so that µ̄ = θ and f(µ) = 0. Since
λ̄ = θ is a simple root of f̄(X), there is a g(X) ∈ R[X] such that f(X) =
(X − λ) g(X) and ḡ(θ) 6= 0; thus

0 = f(µ) = (µ− λ) g(µ).

Therefore, since g(µ) = ḡ(θ) 6= 0, we conclude that g(µ) is an invertible element of R; hence
λ = µ.

To prove the existence, we claim that there is a sequence (λn) n ≥ 1 in R so that λ̄n = θ,
f(λn) ∈ In and λn+1 − λn ∈ In for each integer n ≥ 1. Indeed, let λ1 ∈ R be such that
λ̄1 = θ. Then f(λ1) = f̄(θ) = 0, that is, f(λ1) ∈ I1 . Now, let n ≥ 1 be arbitrary, and
suppose the existence of a λn ∈ R such that λ̄n = θ and f(λn) ∈ In . Then, for every h ∈ In ,
(λn + h) − λn ∈ In and (λn + h) = λ̄n + h̄ = θ. We shall show the existence of an h ∈ In with
f(λn + h) ∈ In+1 . In fact, by Taylor’s formula [4, p. 387], there is a ξ ∈ R so that

f(λn + h) = f(λn) + hf ′(λn) + h2ξ.

And, by hypothesis, h2ξ = h(hξ) ∈ In In ⊂ In I1 ⊂ In+1. But, since θ is a simple root of
f̄(X), f ′(λn) = (f̄)′(θ) 6= 0, that is, f ′(λn) is an invertible element of R. Thus, by taking
h = −f(λn)(f ′(λn))−1 ∈ In and λn+1 = λn + h, we arrive at λn+1 = θ, f(λn+1) ∈ In+1 and
λn+1 − λn ∈ In , as desired.

Finally,
(
f(λn)

)
n≥1 converges to 0 in R, because d

(
f(λn), 0

)
≤ 1

2n
for n = 1, 2, . . . . On the

other hand, for n, ` = 1, 2, . . . ,

d(λn+`, λn) ≤ max{d(λn+`, λn+`−1), . . . , d(λn+1, λn)} ≤ max

{
1

2n+`−1 , . . . ,
1

2n

}
=

1

2n
,

and hence (λn) n ≥ 1 is a Cauchy sequence in (R, d). By the completeness of (R, d), there is a
λ ∈ R for which (λn) n ≥ 1 converges. Consequently, in view of the continuity of the mappings

(α, β) ∈ R×R 7−→ α+ β ∈ R and (α, β) ∈ R×R 7−→ αβ ∈ R,
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(
f(λn)

)
n ≥ 1 converges to f(λ); thus f(λ) = 0.

Now, let us consider K = R/I1 endowed with the discrete ultrametric d′, given by d′(s, s) = 0
and d′(s, t) = 1 if s 6= t (s, t ∈ K). Since the canonical surjection

λ ∈ (R, d) 7−→ λ̄ ∈ (K, d′)

is continuous (Ī1 = {0}) and (λn) n ≥ 1 converges to λ, (λ̄n) n ≥ 1 converges to λ̄. Therefore
λ̄ = θ.

Corollary 2.1. Let R be a discrete valuation ring which is complete under the ultrametric d
given in Proposition 2.1. Let f(X) ∈ R[X] be such that f̄(X) ∈ K[X] admits a simple root θ.
Then there exists a unique root λ of f(X) such that λ̄ = θ.

Proof. Follows immediately from Proposition 2.1, by recalling Example 2.1.

Remark 2.1. Let (K, | · |) and In (n = 1, 2, . . . ) be as in Example 2.2. Then d̃(λ, µ) = |λ− µ|
is an ultrametric on K, and hence its restriction to R×R is an ultrametric on R (which we shall

also denote by d̃). Since, for n = 1, 2, . . . ,{
λ ∈ R; d̃(λ, 0) = |λ| ≤ 1

2n

}
= In =

{
λ ∈ R; d(λ, 0) ≤ 1

2n

}
,

d being as in Proposition 2.1, it follows that d̃ and d are equivalent.

Corollary 2.2. Let (K, | · |) and µ be as in Example 2.2, and assume that (K, d̃) is complete. If
f(X) ∈ R[X] and f̄(X) ∈ K[X] admits a simple root θ, then there is a unique root λ of f(X) so
that |λ− ξ| ≤ |µ| (where ξ ∈ R and ξ̄ = θ).

Proof. Follows immediately from Remark 2.1 and Proposition 2.1.

Corollary 2.3 (cf. [5, p. 16]). Let p be a prime number, Zp = {λ ∈ Qp ; |λ|p ≤ 1} the ring of
p-adic integers and f(X) ∈ Zp[X]. If there is an a0 ∈ Zp such that |f(a0)|p < 1 and |f ′(a0)|p = 1,

then there is a unique a ∈ Zp such that f(a) = 0 and |a− a0|p ≤
1

p
·

Proof. Since the condition “|f(a0)| < 1 ” is equivalent to the condition “f̄(ā0) = f(a0) = 0 ”, and
the condition “|f ′(a0)|p = 1 ” is equivalent to the condition “(f̄)′(ā0) = f ′(a0) 6= 0”, Theorem
6, p. 391 of [4] guarantees that ā0 is a simple root of f̄(X). Therefore the result follows from
Corollary 2.2.

Example 2.3 (cf. [3, p. 52]). Let p be a prime number, p 6= 2, and let b ∈ Zp with |b|p = 1.
If there is an a0 ∈ Zp such that |a20 − b| p < 1, then b = a2 for a unique a ∈ Zp such that

|a− a0| p ≤
1

p
·

Indeed, put f(X) = X2 − b ∈ Zp[X]. Then |f(a0)| p = |a20 − b| p < 1 and |f ′(a0)| p =

|2a0| p = |2|p |a0| p = |a0| p = 1 (the relation |a20 − b| p < 1 = |b|p = 1 implies
(
|a0| p

)2
=

|(a20 − b) + b|p = |b|p = 1). Thus the result follows from Corollary 2.9.
In the same vein one shows that if p is a prime number, p 6= 3, c ∈ Zp , |c|p = 1, and there is

an f0 ∈ Zp such that |f30 − c| p < 1, then c = f3 for a unique f ∈ Zp such that |f − f0| p ≤
1

p
·
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