
Caputo and Caputo-Fabrizio fractional differential masks for image enhancement 19
[8] Concezzi, M. and Spigler, R.; Identifying the Fractional Orders in Anomalous Diffusion
Models from Real Data, Fractal Fract., 2(1) (2014), 14.
[9] El-Ajou, A.; Al-Zhour, Z.; Oqielat, M.; Momani, S. and Hayat, T.; Series Solutions of
Nonlinear Conformable Fractional KdV-Burgers Equation with Some Applications, The Eu-
ropean Physical Journal Plus, 134 (2019), 402.
[10] El-Ajou, A.; Oqielat, M.; Al-Zhour, Z. and Momani, S.; Analytical Numerical Solutions of
the Fractional Multi-Pantograph System: Two Attractive Methods and Comparisons, Results
in Physics, 14 (2019), 102500.
[11] El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Kumar, S. and Momani, S.; Solitary solutions for
time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative,
Chaos, 29 (2019), 093102.
[12] Garg, P. and Jain, T.; A comparative study on histogram equalization and cumulative his-
togram equalization. International Journal of technology and research, 3(9) (2017), 41–43.
[13] Goufo, E. F. D. and Mugisha, S. B.; Similarities in a fifth-order evolution equation with and
with no singular kernel, Chaos, Solitons & Fractals, 130 (2020), 10946.
[14] Jajarmi, A.; Arshad, S. and Baleanu, D.; A new fractional modelling and control strategy
for the outbreak of dengue fever, Physica A., 535 (2019), 122524.
[15] Jajarmi, A.; Baleanu, D.; Sajjadi, S. S. and Asad, J. H.; A new feature of the fractional
Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach,
Frontiers in Physics, 7 (2019), 00196.
[16] Jajarmi, A.; Ghanbari, B. and Baleanu, Dumitru. A new and efficient numerical method for
the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos,
29 (2019), 093111.
[17] Kilbas, A. A.; Srivastava, H. M. and Trujillo, J. J.; Theory and Applications of Fractional
Differential Equations, North Holland Mathematics Studies, 204 (2006).
[18] Kumar, S.; A new fractional modeling arising in engineering sciences and its analytical
approximate solution, Alexandria Engineering Journal, 52 (2013), 813–819.
[19] Kumar, S.; Kumar, A.; Abbas, S.; Al Qurashi, M. and Baleanu, D.; A modified analytical
approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations,
Advances in Difference Equations, 2020(1) (2020), 1–18.
[20] Kumar, S.; Kumar, A. and Nisar, K. S.; Numerical solutions of nonlinear fractional model
arising in the appearance of the strip patterns in two dimensional systems, Advances in
Difference Equations, 413 (2019).
[21] Kumar, R.; Kumar, S.; Singh, J. and Al-Zhour, Z. A comparative study for fractional chem-
ical kinetics and carbon dioxide CO
2
absorbed into phenyl glycidyl ether problems, Mathe-
matics, 5(4) (2020), 3201–3222.
[22] Kumar, S.; Nisar, K. S.; Kumar, R.; Cattani, C. and Samet, B.; A new Rabotnov fractional-
exponential function based fractional derivative for diffusion equation under external force,
Mathematical Methods in Applied Science, 43 (2020), 4460–4471.
Divulgaciones Matem´aticas Vol. 22, No. 1(2021), pp. 1–21