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Abstract

Image enhancement is one of the most important tasks in the field of image processing.
With the help of computer and programming languages many mathematical methods have
been implemented to improve the visual quality of an image. One of the most effective meth-
ods for this purpose is the histogram equalization. The construction of fractional differential
masks for images enhancement has also been proposed. In this paper, we propose a new
way of construction of fractional differential mask based on the Caputo and Caputo-Fabrizio
derivatives. The effectiveness of the proposed methods have been compared with the his-
togram equalization method and the multiplication of each pixel of an image by a constant.
The experiments results have shown superiority of the proposed methods, with better visual
quality and higher gray-level co-occurrence matrix values in four directions.

Key words and phrases: Contrast image enhancement, fractional calculus, fractional
differential mask.

Resumen

La mejora de imédgenes es una de las tareas més importantes en el campo del proce-
samiento de imagenes. Con la ayuda de lenguajes informaticos y de programacién, se han
implementado muchos métodos matematicos para mejorar la calidad visual de una imagen.
Uno de los métodos mas eficaces para este propdsito es la ecualizacién del histograma. Tam-
bién se ha propuesto la construccién de méscaras diferenciales fraccionarias para la mejora
de imagenes. En este articulo, se propone una nueva forma de construccién de méascara di-
ferencial fraccional basada en las derivadas de Caputo y Caputo-Fabrizio. La eficacia de los
métodos propuestos se ha comparado con el método de ecualizaciéon del histograma y la
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multiplicacion de cada pixel de una imagen por una constante. Los resultados de los expe-
rimentos han demostrado la superioridad de los métodos propuestos, con una mejor calidad
visual y valores de matriz de co-ocurrencia de nivel de gris mas altos en cuatro direcciones.

Palabras y frases clave: Mejora de la imagen de contraste, cdlculo fraccional, Méascara
diferencial fraccionaria.

1 Introduction

Digital image processing is a set of techniques applied to digital images with the aim of improving
their quality using a computer. For years, these type of techniques have been investigated and
used in applications for different tasks such as image enhancement, image restoration and image
edge detection, among others. For the image enhancement, various methods have been proposed:
Histogram Equalization (HE) is one of the best used methods for image enhancement. It is
provides better quality of images without loss of any information [12]. The multiplication of
each pixel of an image by a constant is also one of the effective methods to make image clearer.
Recently, many authors have proposed the construction of masks, for image enhancement, based
on fractional derivatives [38-47]. A fractional derivative is an integral operator which generalizes
the ordinary derivative, such that if the fractional derivative is represented by D® then, when
a = n, it coincides with the usual differential operator D™ [5]. Such kind of operators are defined
by the help of spaces as:

Definition 1.1. A function f : [a,b] — R is said to be absolutely continuous on [a, b], denoted
by f € AC|a,b], if given € > 0 there exists some o > 0 such that

Z |f(yr) — fzr)| < e

k=1

whenever {[zy,yx] : k= 1,---,n} is a finite collection of mutually disjoint subintervals of [a, b]
with

n

Z(yk —xp) < 0.

k
Definition 1.2. Let n € Nand k=1,2,--- ,n — 1, the space AC"[a, ] is defined by
AC™a,b] == {f : [a,b] = R: fB)(t) € Cla,b], fV(t) € AC[a, b]}.

There are many definitions of fractional derivatives [42-4]. One of the most popular was
defined by Gronwald and Letnikov:

Definition 1.3. Let a,b € R with a < b, « > 0, f € C"[a,b]. The Gronwald-Letnikov (GL)
fractional derivative of order «, is given by

1 o

GL na : k

D% f(t) = lim — E -1 t — kh). 1
at ( ) h~>1 o+ he =0 ( ) (k)f( ) ( )
where [L;”] denotes the integer part of *3-=.
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One of the inconveniences of Gronwald-Letnikov derivative is that the class of functions for
which this derivative is defined is very narrow. To overcome this inconvenience, Riemann and
Liouville proposed the following definition [17]:

Definition 1.4. Let a,b € R with a < b, « > 0, f € AC"[a,b]. The Riemann-Liouville (RL)
fractional derivative of order «, is defined by

t
1 mn
RL na _ n—(a+1)
Df(t)= =—— [ (t— ds.
) = Ty g [ (= o (s
a

Even though the RL approach overcomes the drawbacks related the GL definition and it has
been applied successfully in many areas of engineering, unfortunately, it leads to initial conditions

containing the limit values of the RL fractional derivative at the lower terminal t = a, for example
. RL na—1 _ : RL mya—2 _ : RL nya—n _
lm (ED5 () = b, B {FEDE2 Oy = be, .l {PEDET () = b

In spite of the fact that initial value problems with such initial conditions can be successfully
solved mathematically, their solutions are practically useless, because there is no known physical
interpretation for such types of initial conditions. An alternative solution to this conflict was
proposed by M. Caputo [17]:

Definition 1.5. Let a,b € R with a < b, a > 0, f € AC™[a,b]. The Caputo fractional derivative
of order «, is defined by
t

1

DL = prmay [ (= s 2)

a

For 0 < o <1 and a = 0, the numerical approximation of (2) takes the form

k+1)ax

1

x 1 N-1
CDiule) = g [ =97V Od > fres > [ e-oes ©

2‘5\2

To describe material heterogeneity and structures with different scales which cannot be well
described by classical local theories or by fractional models with singular kernel, Caputo and
Fabrizio introduced a new fractional approach [7]:

Definition 1.6. Let a,b € R with a < b, 0 < a < 1, f € AC'[a,b]. The Caputo-Fabrizio
fractional derivative of order «, is defined by

M * a X
e e O

where M («) is a function such that M(0) = M (1) = 1.
In [24], Losada and Nieto, suggested the following particular case
1

CFD;’;U(.’IJ) — / 6_&(E—S)ul(8)d8 (4)
l—a/,

1 =
= (u(m)—e T—a u(a)) —(

«

11—« 11—«

x
E / eiﬁ(wa)u(T)dT.
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Taking a = 0, formula (4) can be approximated as

(et D)a
T 1 N-1 N

CFDSIU(I') — - / efm(wfi)u/(g)dg ~ — / eim(mif)ul(fk)df. (5)
*Jo Y= L
N

Fractional derivatives provide interesting possibilities for scientific fields such as anomalous diffu-
sion [40-23], circuit theory [3-43], image processing [33-26] and many others [1-29]. The purpose
of this paper is to improve the visual quality of dark images by using Fractional Differential
Masks in Caputo (FDMC) and Caputo-Fabrizio (FDMCF) senses. The remainder of this paper
is organized as follows: in section 2, we construct a fractional differential mask in the Caputo
sense, next, fractional differential mask in Caputo-Fabrizio sense is given in section 3. Section 4
presents the experimental results of the proposed methods. A conclusion is considered in section
5.

2 Prewitt fractional filter in the Caputo sense

The goal of this section is to costruct a fractional differential mask based on the Caputo derivative
definition. For this purpose, we first discretize numerically the Caputo derivative based on the
forward finite difference scheme in the interval [0, z] (analogously [0,y]). Let’s take a partition

of N nodes of the interval [0, ], with step Az = v . Thus, there are N + 1 nodes. The N + 1

N

causal pixels can be given by
Uy = 'LL(O)
up = u(y)
up = u(k¥)
uy = u(x),

For a € (0,1), by approximating, we obtain

(et D kx+x kx katz
N w (EZTZ) g (BT N
[T gt ~ ML [T e

u(bme) —u (%)
= _(fV_a)(Ax)fZ [(N—k-1D'"*—(N-K)'"]. (6
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Then, taking (6) into (3), we have

CDfule) ~ et Ng{[ (B52) o (5) | fov == ayre - v - e
ouy + (217 =217 %) uy
+(2- 27> =3l — 1) uy

1 +[(N=j—D" 4 (N —j+1)~
~ (Ae)T(2-a) —2(N =)' uj + -+ [(N —2)

_2(]\/‘ _ 1)1704 + lea] Uy

+[(N = 1)t = N2y,

The anterior approximate difference of fractional partial differential on = and y coordinates are
expressed as

=oy(z,y) + (227> =2 17 u(z — 1,y)

1
C na ~ 9l—a _ 9l—a _ 11—« _
D u(x,y) =~ A)TE —a) +(2-2 3 1= u(z — 2,y) , (8)
oot (N = 1) = N u(z —n,y)
and
1z, y) + (27> =2 1) u(z,y — 1)
1
C nHa ~ L 9l—a __9l—a _ 1l—« _
Dg,u(z,y) = (ATE ) +(2-2 3 1= u(z,y — 2) : (9)

o (N = D — N Ju(e,y —n)

As in a digital 2-D gray image u(z,y), the shortest distance on = and y coordinates is one pixel
then we put Az = Ay = 1, and from (7), we obtain N + 1 coefficients ¢; (i = 0,..., N), which
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depend on the fractional order «:

11—a

TRy

21—a —-92. 11—o¢
0= V05—

I'2-a)
_ 2. 21—a _ 31—a _ 11—a

2= T2 a) ’
N (N ) (N — )
T I'2-a) ’

(N _ 1)1—a _ Nl—a
CN = .

22—«

3 Prewitt fractional filter in the Caputo-Fabrizio sense

Following the idea as in the previous section, we obtain

(k-;—vl)m kato
kx+x kx
/ e*ﬁ(rff)u'(fk)dfzu( v )A_H(W) / e Tw (T8 e,
kx ) ke
N N
_ katz) _ . (kz (N 1) A (N A
_1! aa,u( N )Ax U(R) | [oeoginas | _eophan g

k+1)x
CF pa 1N~ )| (( v ) B¢ 2l T P
DOa:u(x) ~ — - e 1-a N —¢ 1-«a N
* =0 N
o _ oAz _oa Az
(176 lfaAz)uNJr (26 im0 — e 27 fl)uN_lJr
_20-Ax 7304-Az _ oAz
(26 I—a — g l-a — e 1—« )UN72++
1 _a:(N—j)-Ax _a(N—j—1)-Ax _a:(N—j+1)-Az
= (2e —a  —e¢ T—a —e e uy g (11)
a-Ax
_a(N—-1) Az _a(N-2)Az _ a-N-Az
++ (26 I—«a —e 1I—« — e I—a )ul
_ a-N-Az _ o (N—-1)-Az _ o (N+1)-Az
+(2€ I—a —e I—«o —e I—«a )uo
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From (11), we obtain N + 1 nonzero coefficients ¢; (i =0,...,N), given by

1 o
— 2 Az
cg=——(1—€e T2
aA;l:( )’
1 9 - Az 71204 Az 1
o= a2 TR me TR ),
Co = L(QefzﬁAz _ G*SﬁAUC o e*ilfaAz)
7 aAz )
o (N—j e (A a . »
Cj:T<2€ =L (N J)Aac_e 25 (N—j l)Ax_e 2 (N J+1)Aw)7
AT
1 _a _ a _ .
CN_1= A (26 s (N-DAz _ —125(N=-2)Az _ 1_0NA9¢)’
AT
1 __a . __a B L
CN:T(Qe 1—aNA1_€ 1—a(N 1)A$_e 71_Q(N+1)Ax).
AT

Taking Az = Ay = 1, as in the previous section, we obtain the followings two expressions:

(1-— e_ﬁ)u(x,y) + (26_ﬁ —e 21w — Du(z —1,y)

1 o o o
“EDg u(x,y) ~ o +(2e’2ﬁ —e 3T — 671*“‘)“(93 -2,y)+- ;o (12)

+(2e7 TSN e T N L omt S (VD) (g )

and

(1- efﬁ)u(x,y) + (267& —e e — Du(z,y — 1)
1 a a o
CFDS‘yu(x,y) ~ +(26_2m —e 3 — e_m)u(x,y —2) 4 . (13)
+(267ﬁN —e Ta(N-D) eiﬁ(NH))u(x,y —n)

The next images show the results of applying the proposed FDMCF, with different values of
differential order «, on the following images: goldhill image, drak bedroom and dark room.
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(c) o = 0.0072

(e) o = 0.0074 £) a = 0.0075

Figure 1: Result of applying the proposed FDMCF on goldhill image with different values of
differential order a.
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(a) Original image

(e) a = 0.006 (f) a = 0.007

Figure 2: Result of applying the proposed FDMCF on a dark bedroom image with different
values of differential order «.
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(a) Original image (b) o =0.003

(f) a = 0.007

Figure 3: Result of applying the proposed FDMCF on a dark room image with different values
of differential order a.
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The next tables show the results of contrast in terms of the Gray-Level Co-occurrence Matrix
(GLCM) in 4 directions, on the following images: goldhill image, drak bedroom and dark room.

Angle
0° 459 900 1359
Original image 0.2743 | 0.5685 | 0.4336 | 0.5542
HE 0.5018 | 0.9403 | 0.6727 | 0.9352
M | MPIT 0.4642 | 0.8428 | 0.6060 | 0.8476
e | FDMC for o = 0.0155 7.4922 | 11.7211 | 8.8573 | 11.5499
t | FDMC for o = 0.0165 13.0910 | 18.5857 | 12.7200 | 18.6007
h | FDMC for a = 0.0170 15.1278 | 20.5889 | 13.4156 | 20.7000
o | FDMCEF for o = 0.0071 || 9.0089 | 12.3465 | 8.7710 | 12.4288
d | FDMCEF for a = 0.0072 || 9.5492 | 12.8873 | 9.0874 | 13.0488
FDMCF for o = 0.0073 || 9.9501 | 13.2338 | 9.2318 | 13.4732
Table 1: Gold-hill image.
Angle
oY 459 900 1359
Original image 0.0007 | 0.0888 | 0.0885 | 0.0888
HE 0.2229 | 0.3526 | 0.2241 | 0.3632
M | MPITH 0.1345 | 0.2625 | 0.1488 | 0.2638
e | FDMC for a = 0.013 0.7667 | 1.4983 | 1.0776 | 1.5015
t | FDMC for o = 0.014 0.7653 | 1.4477 | 1.0253 | 1.4494
h | FDMC for a = 0.015 0.7172 | 1.4236 | 1.0371 | 1.4240
o | FDMCEF for o = 0.005 || 0.6574 | 1.0510 | 0.6768 | 1.0653
d | FDMCEF for a = 0.006 || 0.6459 | 0.9865 | 0.6296 | 0.9923
FDMCEF for a = 0.007 || 0.5014 | 0.7176 | 0.4438 | 0.7180
Table 2: Dark bedroom.
Angle
oY 459 90Y 1357
Original image 0.4711 | 0.6691 | 0.2139 | 0.6694
HE 0.6178 | 0.8568 | 0.5153 | 0.8977
M | MPITH 0.4221 | 0.7419 | 0.4225 | 0.7560
e | FDMC for o = 0.013 3.5218 | 5.4161 | 3.4127 | 5.4255
t | FDMC for o = 0.014 3.6872 | 5.8437 | 3.7464 | 5.8422
h | FDMC for a = 0.015 3.8128 | 6.0092 | 3.8800 | 6.0260
o | FDMCEF for a = 0.005 || 2.4504 | 3.9630 | 2.6457 | 3.9593
d | FDMCEF for a = 0.006 || 2.5697 | 4.2178 | 2.8633 | 4.1469
FDMCEF for a = 0.007 || 2.7114 | 4.0842 | 2.6762 | 4.0415

Table 3: Dark room.
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The following images show the comparison of contrast enhancement capability between the
methods: MPIT; MPITH; HE; FDMC; and FDMCF applied to the Goldhill image.

(e) FDMC with o = 0.0155

Figure 4: Comparison of contrast enhancement capability between methods.
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The next images show the comparison of contrast enhancement capability between the meth-

ods: MPIT; MPITH; HE; FDMC; and FDMCF applied to the Dark Bedroom image.

(a) Original image

(c) MPITH

(e) FDMC with o = 0.014 (f) FDMCF with a = 0.006

Figure 5: Comparison of contrast enhancement capability between methods.
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The next images show the comparison of contrast enhancement capability between the meth-
ods: MPIT; MPITH; HE; FDMC; and FDMCF applied to the Dark room image.

(a) Original image (b) MPIT

(e) FDMC with o = 0.013 (f) FDMCF with o = 0.005

Figure 6: Comparison of contrast enhancement capability between methods.
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(a) Dark bedroom image

(b) Dark room image (¢) Gold-hill image

Figure 7: Original images used in the experimental result.

4 Experimental results

The aim of this section is to demonstrate that fractional differential masks based on Caputo
(FDMC) and Caputo-Fabrizio (FDMCF) definitions have better capability in texture-enhancing
than the traditional approaches for texture-rich image. To this purpose, we analyze the texture-
enhancing capability of the proposed masks and discuss the relationship between fractional power
parameter « and texture-enhancing details by using Gray-Level Co-occurrence Matrix (GLCM).
Finally, we discuss the capability of texture enhancement of the proposed masks by making
comparison with Histogram Equalization (HE), Multiplication of each Pixel of an Image by Two
(MPIT) and Multiplication of each Pixel of an Image by Three (MPITH) methods. Three images

Divulgaciones Matemadticas Vol. 22, No. 1(2021), pp. 1-21
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used in the experimental results are shown in Figures 7. First is dark bedroom image, second
is a dark room image, the third one is the gold-hill image. To obtain the fractional differential
on the eight symmetric directions and make the fractional differential masks have anti-rotation
capability, eight fractional differential masks which are respectively on the directions of 09, 45°,
90°, 1359, 180, 2259, 270Y and 315° are implemented in Fig. 8. Considering

cotcrtce+---+cy
8

sum =

and taking into account the eight neighboring pixels of a given one, we propose the fractional
differential mask, given by Table 4.

C, 10 0 Cn |0 0 Cn

0 o]0 : 0 oo
. 0 Cl Cl Cl 0 .
Ch Ch sum | Cy Ch

0 Cy Ch Cy 0

0 o]0 : 0 o]0
C, |0 0 C, |0 0 C

Table 4: Fractional differential mask.

For the implementation of the FDMCF method, we have taken only the following three
coefficients:

1 L«
coza(l—e lfa),
1 _ 2«
0125(26 T-a —¢ T-a —1),
_l _2%(,__37a__fa
02—a(2e T e °T e T ),

while for the FDMC method, we considered the coefficients:

11—04 21—04 —92. 11—(1 2. 21—a _ 31—a _ 11—(1
P —— 1= Co =
r2-a) ! r2—a) 2 r'2-a) ’

Co =
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Figure 8: Different mask
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Images a) of the Figures 1, 2 and 3 are the original images while images b), ¢), d) and f) of
Figures 1, 2 and 3 are the results of applying the FDMCF method on the original images with
different values of differential order. Images a), b), ¢), d) and f) of the Figures 4, 5 and 6 are the
original image, enhancing result of a) by MPIT, enhancing result of a) by MPITH, enhancing
result of a) by HE, enhancing result of a) by FDMC and enhancing result of a) by FDMCF,
respectively. On theses figures, we can see that images obtained by the proposed methods look
better than those obtained by other methods. For the comparison purpose, we use the contrast of
Gray-Level Co-occurrence Matrix (GLCM) in four directions. Tables 1, 2 and 3 are the contrasts
of GLCM in four directions. From these tables we can conclude that the proposed methods
outperform HE, MPIT and MPITH methods. Based on the results shown in Figures 4, 5 and
6 we can see that the proposed methods are more effectives than the HE, MPIT and MPITH
methods, since they enhance better the visual appearance of an image and make it clearer.

5 Conclusion

In this paper, we proposed construction of fractional differential masks using Caputo and Caputo-
Fabrizio fractional derivatives. Experiments results showed that filtered images by the proposed
methods have better visual appearance. Moreover, the proposed techniques have demonstrated
a good performance with higher GLCM values.
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