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Abstract

Many concepts of Number Theory were used in Graph Theory and several types of graphs
have been introduced. We introduced the graph of a base power b ∈ Z+−{1}, associated to
a positive integer number n ∈ Z+, denoted for GPb(n), with set of vertices V = {x}nx=1 and
with set of edges:

E = {{x, y} ∈ 2V : ∃r ∈ Z+ ∪ {0}, such that |y − x| = b r},

and we study some of its properties, in special for case b = 2.
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Resumen

Muchos conceptos de la Teoŕıa de Números han sido utilizados en la Teoŕıa de Grafos y
distintos tipos de grafos se han introducido. Introducimos el grafo de una potencia de base
b ∈ Z+ − {1}, asociada a un entero n ∈ Z+, denotado por GPb(n), con conjunto de vértices
V = {x}nx=1 y conjunto de lados

E = {{x, y} ∈ 2V : ∃r ∈ Z+ ∪ {0}, tal que |y − x| = b r},

y estudiamos algunas de sus propiedades, en especial para el caso b = 2.

Palabras y frases clave: Ciclo Hamiltoniano; Hamilton-conectividad; Panciclicidad.

1 Introduction

A graph G consist of a nonempty set V (G) of elements represented for points, called vertices
and a set E(G) of elements represented for lines segments with ends an unique pair of vertices,
this lines are called edges or sides and it is said that the pair of vertices are adjacent. A graph
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without loops (there is no an edge with equal ends vertices) and without multiple edges (there
are no two or more edges with the same ends vertices) is called a simple graph. Two graph
are isomorphic if both graphs have same properties and different graphics representation. Let
x ∈ V (G), the degree of x, denoted for dG(x), is the number of times that x is end of edges in
G. Thus, δ(G) and ∆(G) denote, respectively, the minimun degree and maximun degree of G. A
graph G is complete if every two distinct vertices in G are adjacent. A complete graph with n
vertices is denoted by Kn. A path is a subgraph P of a graph G (graph with subsets of V (G) and
E(G), respectively) formed by an alternating succession of adjacent vertices, furthermore, P has
an initial vertex and final vertex, called extreme. A graph G is called connected if there is a path
between any two distinct vertices in G. If there is no repetition of vertices in the path, it is said
to be an elemental path. Let P be the path between the vertices x and y, also denoted by xPy
or yPx indistinctly, but if we denoted xP +y when P is traversed from x to y then we denoted
xP −y when P is traversed from y to x. A Hamiltonian path of a graph is an elemental path
containing all the vertices of the graph. A cycle in a graph is an elemental path whose extreme
vertices are the same. A Hamiltonian cycle, in a graph, is a cycle that visits each vertex of the
graph. A Hamiltonian graph is a graph that contain a Hamiltonian cycle. A Hamilton-connected
graph is a graph that contains a Hamiltonian path between each pair of vertices. A pancyclic
graph is a graph that contains cycles of all the lengths, among 3 and n. In this paper only we
consider simple graphs and we refer the reader to [3] for the definitions not given here.

The motivation of this paper is related with the use of the concepts of Number Theory and
Graph Theory, to obtain other types of graphs as in [1] and [6]. We define a graph associated
to a positive integer number n, denoted by G(n), as a graph with set of vertices V = {xk}nk=1,
such that xk is a succession in Cn and set of side E = {{xi, xj} ∈ 2V /xi Φxj ∨ iΨj}, with Φ, Ψ
relations between xi and xj in V and between i, j in Z+, respectively, and 2V the power set of V
[5]. In particular, we introduce the graph of a base power b ∈ Z+ − {1}, associated to a positive
integer number n ∈ Z+ , denoted for GPb(n), with set of vertices V = {x}nx=1 and with set of
edges:

E = {{x, y} ∈ 2V : ∃r ∈ Z+ ∪ {0}, such that |y − x| = b r},

and we characterized the degree for any vertex in GPb(n), the minimun degree and maximun
grade of GPb(n) in function of n and b, moreover, we study the Hamilton-connectivity and the
pancyclicity of GP2(n) and some other applications of the GPb(n) graph for case n = 2.

2 The graph of a power of a given base, associated to a
positive integer

Let dGPb(n)(x), δ(GPb(n)) and ∆(GPb(n)) be, respectively, the degree of x in GPb(n), the min-
imun degree and maximun degree of GPb(n).

Lemma 1. For all b ∈ Z+−{1}, for all n ∈ Z+ and for all x ∈ V (GPb(n)), we have dGPb(n)(x) =
0, if n = 1 and for n > 1:

dGPb(n)(x) =

{
blog b(x− 1)c+ blog b(n− x)c+ 2, if 1 < x < n

blog b(n− 1)c+ 1, if x = 1, n
.

Proof. Let b ∈ Z+−{1} and n ∈ Z+. If n = 1 then GPb(1) = K1, in consequence dGPb(1)(x) = 0,
for x ∈ V (GPb(1)). If n > 1, we have qn = blog b(n)c, with qn = max{i ∈ Z+ ∪ {0} / b i ≤ n}
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and, moreover, we consider two cases for x ∈ V (GPb(n)), x = 1, n or x = h, l, indistinctly (see
Figure 1):

Figure 1: GPb(n), with qn = max{i ∈ Z+ ∪ {0} / b i ≤ n}.

Case 1. If x = 1, then by definition of GPb(n), x is adjacent

2, b+ 1, b2 + 1, · · · , b r + 1︸ ︷︷ ︸
r+1

or if x = n, then by definition of GPb(n), x is adjacent to

n− 1, n− b, n− b2, · · · , n− b r︸ ︷︷ ︸
r+1

.

Thus, as br + 1 ≤ n, we have dGPb(n)(x) = r + 1, if

r =

{
qn, if n > b qn

qn − 1, if n = b qn
.

But for each b, n ∈ Z+ − {1},

blog b(n− 1)c =

{
qn, if n > b qn

qn − 1, if n = b qn
. (1)

Therefore, dGPb(n)(x) = blog b(n− 1)c+ 1, for x = 1, n.

Case 2. If x = h or x = l, indistinctly, then 1 < x < n (see Figure 1) and by definition of
GPb(n), x is adjacent to

x− b r, · · · , x− b2, x− b, x− 1︸ ︷︷ ︸
r+1

and to
1 + x, b+ x, b2 + x, · · · , b s + x︸ ︷︷ ︸

s+1

.

Thus, as 1 ≤ x− br and bs + x ≤ n, we have dGPb(n)(x) = r + s+ 2, if

r =

{
qx, if x > b qx

qx − 1, if x = b qx

and s = qn−x. But by equation 1, it follows that qx = max{i ∈ Z+ ∪ {0} / b i ≤ x}, furthermore,
qn−x = max{i ∈ Z+ ∪ {0} / b i ≤ n− x}. Therefore, we obtain that dGPb(n)(x) = blog b(x− 1)c+
blog b(n− x)c+ 2.
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Theorem 1. For all b ∈ Z+ − {1}, for all n ∈ Z+ and for all x ∈ V (GPb(n)), we have:

1. dGPb(n)(x) = dGPb(n)(n− x+ 1).

2. δ(GPb(n)) = dGPb(n)(1) = dGPb(n)(n).

3. ∆(GPc(n)) ≤ b2[log b(
n−1
2 ) + 1]c, if n ≥ 3.

Proof. (Numeral 1). Follows from Lemma 1.

(Numeral 2). Let b ∈ Z+−{1}. If n = 1 then GPb(1) = K1, in consequence dGPb(1)(x) = 0, for
x ∈ V (GPb(1)). Thus, δ(GPb(1)) = ∆(GPb(1)) = 0. Furthermore, if n = 2 then GPb(2) = K2,
therefore dGPb(2)(x) = 1, for all x ∈ V (K2), in consequence δ(GPb(2)) = ∆(GPb(2)) = 1. This is,
δ(GPb(1)) = dGPb(1)(1) = 0 and δ(GPb(2)) = dGPb(2)(1) = dGPb(2)(2) = 1, for all b ∈ Z+ − {1}.

If n ≥ 3, by the proof of Numeral 1, is sufficient that 1 < x ≤ bn+1
2 c for prove that dGPb(n)(1) =

dGPb(n)(n) ≤ dGPb(n)(x), for all x ∈ V (GPb(n)). We consider two cases for x ∈ V (GPb(n)), x = 2

or 3 ≤ x ≤ bn+1
2 c:

Case 1. If x = 2, by Lemma 1 and the equation 1, we have dGPb(n)(2) = blog b(n−2)c+2 and
qn − 1 ≤ blog b(n− 2)c ≤ blog b(n− 1)c ≤ qn. Therefore blog b(n− 2)c+ 2 ≥ blog b(n− 1)c+ 1 =
dGPb(n)(1) = dGPb(n)(n).

Case 2. If 3 ≤ x ≤ bn+1
2 c and n is even, then 3 ≤ x ≤ n

2 = bn+1
2 c, so that 3 ≤ x ≤ n − x

and n − 1 ≤ (n − x)(x − 1) (w, z ∈ Z and 2 ≤ w ≤ z ⇒ w + z ≤ wz), in consequence
log b(n− 1) ≤ log b(n− x) + log b(x− 1).

If 3 ≤ x ≤ bn+1
2 c and n is odd, then 3 ≤ x ≤ n

2 < b
n+1
2 c = n+1

2 , in consequence we need to
prove, only that x = n+1

2 implies log b(n− 1) ≤ log b(n− x) + log b(x− 1). Indeed, if n = 2k + 1,
with k ∈ Z+−{1} (3 ≤ x ≤ n+1

2 ), then x = n+1
2 = k+1 and as 2k ≤ k2,∀k ∈ Z+−{1}, similarity,

we obtain that n− 1 ≤ (n− x)(x− 1). Therefore, log b(n− 1) ≤ log b(n− x) + log b(x− 1).
Likewise, as bwc + bzc ≤ bw + zc ⇔ bw + zc + 1 ≤ bwc + bzc + 2,∀w, z ∈ R then we have

blog b(n−1)c+1 ≤ blog b(x−1)c+blog b(n−x)c+2 . This is, dGPb(n)(1) = dGPb(n)(n) ≤ dGPb(n)(x),

if 3 ≤ x ≤ bn+1
2 c (see Lemma 1).

(Numeral 3). If n = 3 we consider that ∆(K3) = 2 = b2[log b(
3−1
2 ) + 1]c, for all b ∈ Z+−{1}.

If n = 4 then, by definition of GPb(n),

∆(GPb(4)) =

⌊
2

[
log b

(
4− 1

2

)
+ 1

]⌋
=

{
3, if b = 2

2, if b > 2
.

If n ≥ 5, we consider that the maximum of the function f(x) = log b(x−1)+log b(n−x)+2, in
the interval [2, n−1], is 2 log b(

n−1
2 )+2 for x = n+1

2 , (f(x) is continuous and differentiable function
in ]2, n − 1[ and [2, n − 1], respectively), whereby f(x) reach the maximum valor (Weierstrass’s
Extreme Valor Theorem and Critical Value of f [4]. Furthermore, we consider the proof of
Numeral 1 and the Lemma 1. Thus, we have ∆(GPb(n)) ≤ b2[log b(

n−1
2 ) + 1]c.

We consider other interesting properties. For all b ∈ Z+ − {1} and for all n ∈ Z+, GPb(n) ⊆
GPb(n + 1) (GPb(n) is subgraph of GPb(n + 1)). Furthermore, GPb(n) contain a Hamiltonian
path, denoted by HP , such that for n > 1, E(HP ) = {{x, x + 1}}n−1x=1 . However, some graphs
of base power b, associated to a positive integer number n, no contain a Hamiltonian cycle, for
example GP3(9) contain a Hamiltonian path HP : 1,2,3,4,5,6,7,8,9 and no contain a Hamiltonian
cycle (see Figure 2).
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Figure 2: GP3(9).

Otherwise, if n = bs + br, with n ≥ 3, b ∈ Z+ − {1}, s, r ∈ Z+ ∪ {0} and, without loss of gen-
erality, qn = r (see equation 1) then HC : n,HP −, b r +1, 1, HP +, b r, n is a Hamiltonian cycle in
GPb(n). For exampleGP3(12) contain a Hamiltonian cycleHC : 12, 11, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12,
because n = 12 = 3 + 32 (see Figure 3).

Figure 3: GP3(12).

In consequence, for any B = b in Z+, if A = r = s = 2 or if A = b + 1, with r = b + 2
and s = b+ 1, then GPB(ABA) is Hamiltonian. This is, the GPb(2b

2) and GPb((b+ 1)bb+1) are
Hamiltonian. Thus, there exists an infinite subsuccession, in the ABA numbers sequence (have
the form aba, ∀a ∈ Z+), associated to a Hamiltonian graph of a base power B to a positive integer
number ABA. The ABA numbers, sequence A171607 in the OEIS (The On-Line Encyclopedia
of Integer Sequences) [7], is a generalization of the Cullen and Woodall numbers. The Cullen
numbers are given by the expression a2a + 1, (sequence A002064 in the OEIS, [8]) and Woodall
numbers by a2a − 1, ∀a ∈ Z+ (sequence A003261, [9]).

Furthermore, for n ∈ Z+ − {1} fixed, if b → ∞ then GPb(n) → HP n−1, this is, if b > n
implies that the graph GPb(n) is the Hamiltonian path HP with length n− 1 (Lemma 1 and the
proof of Numeral 1 in the Theorem 1). For example, for n = 4, see Figure 4.

Figure 4: b→∞⇒ GPb(4)→ HP 3.

Also, thanks to the Lemma 1, we can obtain the degree sequence of any GPb(n). A non-
decreasing sequence ql, q2, . . . , qn of non-negative integers is the degree sequence or graphic se-
quence, if only if there is a graph G with n vertices xl, x2, . . . , xn, such that the dG(xi) = qi for
i = 1, 2, . . . , n [2].
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3 The graph GP2(n)

In this section, we studied the graphs of base power 2, associated to a positive integer number n,
when are pancyclic, Hamiltonian and Hamilton-connected.

Theorem 2. For all integer n ≥ 3, GP2(n) is pancyclic.

Proof. For n = 3, GP2(3) = K3, which is pancyclic (see Figure 5, below).

Figure 5: GP2(n), with n = 1, 2, 3, 5.

Let n ≥ 4. By definition of GP2(n), there is a Hamiltonian path, HP in GP2(n), with initial
vertex 1 and final vertex n, its vertices set contain a consecutive positives integer succession.
Likewise, GP2(n) have sides {xi, xi+1} for i = 1, 2, 3, . . . , pk and {yj , yj+1} for j = 1, 2, 3, . . . , qk,
with xi = 2i − 1, yj = 2j, pk =

⌊
k
2

⌋
−par(k), qk =

⌊
k
2

⌋
− 1, for k = 4, 5, 6, . . . , n, and par(h) =

1+(−1)h
2 (parity of h ∈ Z). Therefore, we consider in GP2(n) the n− 3 cycles:

C k :x1, x2, · · · , xpk+1, yqk+1, · · · , y2, y1, x1,

furthermore, we observe that V (C k) = {xi}pk+1
i=1 ∪{yj}

qk+1
j=1 , |V (C k)| = k and as K3 = GP2(3) ⊆

GP2(n), for all integer n ≥ 3, GP2(n) also contain the cycle C3 : 1, 3, 2, 1, thus, we obtain GP2(n)
is pancyclic.

We observe that for k = n, in the proof of Theorem 2, GP2(n) contains a Hamiltonian cycle,
therefore, for all n ≥ 3, GP2(n) is a Hamiltonian graph. For example, GP2(4) and GP2(5) are
isomorphic, respectively, to the graphs in Figure 6.

Figure 6: The isomorphic of GP2(n), with n = 4, 5.

We observe the cycles in GP2(4):

C 3: 1,3,2,1 C 4: 1,3,4,2,1.

And observe the cycles in GP2(5):

Theorem 3. For all n ∈ Z+ − {4}, GP2(n) is Hamilton-connected.
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C 3: 1,3,2,1 C 4: 1,3,4,2,1 C 5: 1,3,5,4,2,1.

Proof. For n = 1, 2, 3, follows from the definition of GP2(n), moreover, GP2(1), GP2(2) and
GP2(3) are isomorphic to the complete graph K 1, K 2 and K 3, respectively (see Figure 5,
further behind). Thus, for n > 4 we apply induction over n.

If n = 5, we consider the elemental paths in GP2(5) (observing Figure 6):

HP 4: 1,2,3,4,5 2P5: 2,1,3,4,5 3P5: 3,1,2,4,5 4P5: 4,3,2,1,5
1P4: 1,2,3,5,4 2P4: 2,1,3,5,4 3P4: 3,2,1,5,4
1P3: 1,2,4,5,3 2P3: 2,1,5,4,3
1P2: 1,3,5,4,2

Then, GP2(5) is Hamilton-connected.
If n = 6 (see Figure 7), we consider four cases, based in the construction of the Hamiltonian

paths in GP2(5):

Figure 7: GP2(6).

Case 1. The elemental paths in GP2(6), expanding the Hamiltonian paths in GP2(5) define
previously:

1P5: 1,2,3,4,6,5 2P5: 2,1,3,4,6,5 3P5: 3,1,2,4,6,5
1P4: 1,2,3,5,6,4 2P4: 2,1,3,5,6,4 3P4: 3,2,1,5,6,4
1P3: 1,2,4,6,5,3 2P3: 2,1,5,6,4,3
1P2: 1,3,5,6,4,2

Case 2. For the Hamiltonian paths HP 5, 2P6, 3P6, 4P6 and 5P6 in GP2(6), we extend the
Hamiltonian paths in GP2(5) to:

HP 5: 1,2,3,4,5,6 2P6: 2,1,3,4,5,6 3P6: 3,1,2,4,5,6 4P6: 4,3,2,1,5,6

Case 3. For the Hamiltonian path 4P5 in GP2(6) , we extend the Hamiltonian path 4P2 in
GP2(4) (see Figure 6), therefore 4P5 : 4, 3, 1, 2,6,5.

Case 4. For the Hamiltonian path 5P6 in GP2(6) , we extend the Hamiltonian path 2P5 in
GP2(5) (see Figure 6), therefore 5P6 : 5, 4, 3, 1, 2,6.

Thus, GP2(6) is Hamilton-connected.
Successively, by construction, from the Hamiltonian paths in GP2(5), suppose that theorem

is true for 6 ≤ n = h (inductive hypothesis: GP2(h) is Hamilton-connected), we will demonstrate
that GP2(h+ 1) is Hamilton-connected:
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If we consider n = h+ 1, all elemental paths in GP2(h+ 1), with length h, contain h vertices
of any elemental paths in GP2(h) and contain h−1 vertices of any elemental paths in GP2(h−1)
(GP2(h − 1) ⊆ GP2(h) ⊆ GP2(h + 1)). Therefore, for x, y ∈ V (GP2(h + 1)) different, without
loss of generality, suppose x < y, we chosen the vw-elemental path in GP2(h) (or in GP2(h− 1)),
and we consider four cases, for found the xy-elemental path, with length h, in GP2(h+ 1):

Case 1. If, simultaneously, v 6= h − 1, w 6= h and x, y 6= h + 1, then by construction, from
the Hamiltonian paths in GP2(5) until GP2(h), in GP2(h), we obtain the elemental paths with
length h− 1 :

vPw : v, · · · , h− 1, h, · · · , w

or
vPw : v, · · · , h, h− 1, · · · , w

which are expanded, respectively, to the elemental paths in GP2(h+ 1), with length h:

xPy : v, · · · , h− 1,h + 1, h, · · · , w

or
xPy : v, · · · , h,h + 1, h− 1, · · · , w.

Case 2. Let v = x, if w = h then y = h + 1, so that, in GP2(h), we obtain the elemental
path, with length h− 1 (inductive hypothesis):

vPw : v, · · · , w.

which is extended to, the path in GP2(h+ 1), with length h:

xPy : v, · · · , w,h + 1.

Case 3. If x = h− 1 then y = h. Thus, we chosen the vw-Hamiltonian path in GP2(h− 1)
(for 5 ≤ h− 1 < h, we consider the inductive hypothesis), with v = h− 1 and w = h+ 1− 2r for
r > 1, and we obtain the elemental path, with length h:

xPy : v, · · · , w,h + 1,h.

Case 4. If x = h and y = h+ 1, we chosen the vw- Hamiltonian path in GP2(h), with v = h
and w = h+ 1− 2r for r > 1 (inductive hypothesis), we obtain the elemental path, with length
h:

xPy : v, · · · , w,h + 1.

Finally, if n = 4, we observe in the Figure 6 above, that in GP2(4) does not exists a Hamil-
tonian path 2P3, in consequence GP2(n) is Hamilton-connected for all n ∈ Z+ − {4}.

We observe that the graph GP2(n) has interesting properties obtained by construction, with-
out the need for many conditions.

Given Theorem 2 and Theorem 3, for any integer n ≥ 16, GP2(n) are examples of an infinity
of Hamiltonian graphs, such that k

k+1n ≥
n
2 > ∆(GP2(n)), with k ∈ Z+ or n > 2∆(GP2(n)) ≥

dGP2(n)(x) +dGP2(n)(y) for any x, y ∈ V (GP2(n)). In all cases, we consider Lemma 1, Theorem 1

and 4
√

2(n−1) > n, for all integer n ≥ 7 and 2
n
2 > (n−1)2, for all integer n ≥ 16. In consequence,

the hypothesis of Seymour’s Conjecture, of Dirac’s Theorem and of Ore’s Theorem (see [3]) are
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no necessary for the graph GP2(n) with n ≥ 16. Furthermore, by Lemma 1, Theorem 2 and the
inequalities shows above, we obtain that the sequence degree of GP2(n), for all integer n ≥ 16, no
satisfies the hypothesis of Chvátal’s Theorem [2]. In consequence, {GP2(n)}∞n=16 is a succession
of Hamiltonian graphs whose degree sequence is majorized by a graphic sequence which is not
forcibly Hamiltonian. A sequence q1, q2, . . . , qk majorizes a sequence d1, d2, . . . , dk if and only if
qi ≥ di, for all i ≤ k, with k ∈ Z+ and a graphic sequence is forcibly Hamiltonian, if and only if
every graph with this degree sequence is Hamiltonian [2].

Finally, thanks to GP2(n), we show that any sequence of consecutive positive integers, {n}mn=1,
is associated, simultaneously, to a nontrivial pancyclic (Hamiltonian) and Hamilton-connected
graph.
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