'%3E%0A%3Cpath d='M-934.9 98.6H0v-26H-934.9v26Z' class='g0'/%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath d='M300.8 182.8H435.7m-327 74.7H237.1m164.1 91.1h44.6M82.3 365.1h93.5m100.3 58.2H400.3m-65.2 58.1H445.8M317.3 638.6H445.8M248.1 713.3H365.5M132.1 879.1H269m131.7 41.6h45.1M82.3 937.2h93.6m35.3 74.7H354.7m-103.2 91.2H392.2M706.4 199.3H837m1.7 58.2H883M519.5 274H609m143.9 74.6h120M699.3 439.8H836.9m-161 74.6H809.2m28.6 58.2H883M519.5 589.1h91.1m-28 91.2H702.5m-54.1 74.6H786m-48.8 91.2H873.6M729.2 986.7H853.8m-308 74.7H682.4' class='g1'/%3E%0A%3C/svg%3E)
_________________________________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol.XXXV
7 of 8
[20] Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR.
Emerging strategies to combat ESKAPE pathogens in the
era of antimicrobial resistance: a review. Front. Microbiol.
[Internet]. 2019; 10:539–563. doi: https://doi.org/ghfddk
[21] Chen X, Liao B, Cheng L, Peng X, Xu X, Li Y, Hu T, Li J, Zhou
X, Ren B. The microbial coinfection in COVID–19. Appl.
Microbiol. Biotechnol. [Internet]. 2020; 104:7777–7785.
doi: https://doi.org/ghr4jf
[22] Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska
K, Gilchrist M, Satta G, Cooke G, Holmes A. Bacterial and
fungal co–infection in individuals with coronavirus: A rapid
review to support COVID–19 antimicrobial prescribing. Clin.
Infect. Dis. [Internet]. 2020; 71(9):2459–2468. doi: https://
doi.org/ggx3b6
[23] Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes:
Public health risk factors, prevention and control. Pathogens
[Internet]. 2021; 10(2):248. doi: https://doi.org/gjqj7g
[24] Mahalingam SS, Jayaraman S, Pandiyan P. Fungal colonization
and infections—interactions with other human diseases.
Pathogens [Internet]. 2022; 11(2):212. doi: https://doi.org/pvfz
[25] Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha
A, Simonsen GS, Colomb–Cotinat M, Kretzschmar ME,
Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira
TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMR
Collaborative Group. Attributable deaths and disability–
adjusted life–years caused by infections with antibiotic–
resistant bacteria in the EU and the European Economic Area
in 2015: A population–level modelling analysis. Lancet Infect.
Dis. [Internet]. 2019; 19(1):56–66. doi: https://doi.org/gfgv4k
[26] Atıcı A, Seçinti İE, Çelikkaya M E, Akçora B. The histopathological
effect of tissue adhesive on urethra wound healing process: An
experimental animal study. J. Pediatr. Urol. [Internet]. 2020;
16(6): 805.E1-805.E6. doi: https://doi.org/pvf2
[27] York MK. Procedure 3.13.2, Quantitative cultures of wound
tissues. In: Garcia LS, editor. Clinical Microbiology Procedures
Handbook. 3
rd
ed. Washington (DC, USA): ASM Press; 2010.
p. 3.13.2.1–3.13.2.10.
[28] Jiang N, Rao F, Xiao J, Yang J, Wang W, Li Z, Haung R, Liu Z,
Guo T. Evaluation of different surgical dressings in reducing
postoperative surgical site ınfection of a closed wound. A
network meta–analysis. Int. J. Surg. [Internet]. 2020; 82:24–
29. doi: https://doi.org/gskx23
[29] Doyle RJ. Contribution of the hydrophobic effect to microbial
infection. Microb. Infect. 2000; 2(4):391–400. doi: https://
doi.org/bgbhz3
[30] Bacakova L, Filova E, Parizek M, RumL T, Svorcik V. Modulation
of cell adhesion, proliferation and differentiation on materials
designed for body implants. Biotechnol. Adv. [Internet]. 2011;
29(6):739–767. doi: https://doi.org/dn5w38
[31] Totty JP, Bua N, Smith GE, Harwood AE, Carradice D, Wallace
T, Chetter IC. Dialkylcarbamoyl chloride (DACC)–coated
dressings in the management and prevention of wound
infection: a systematic review. J. Wound Care [Internet].
2017; 26(3):107–114. doi: https://doi.org/gm8t9q
[32] Stanirowski PJ, Bizon M, Cendrowski K, Sawicki W. Randomized
controlled trial evaluating dialkylcarbamoyl chloride impregnated
dressings for the prevention of surgical site infections in adult
women undergoing cesarean section. Surg. Infect. 2016;
[Internet]. 17(4):427–435. doi: https://doi.org/f8xdp7
[33] Geroult S, PhillipsRO, Demangel RO. Adhesion of the ulcerative
pathogen Mycobacterium ulcerans to DACC – coated dressing.
J. Wound Care [Internet]. 2014; 23(8):417-424. doi: https://
doi.org/f6d29f
[34] Husmark J, Morgner B, Susilo YB, Wiegand C. Antimicrobial
effects of bacterial binding to a dialkylcarbamoyl chloride–
coated wound dressing: an in vitro study. J. Wound Care
[Internet]. 2022; 31(7):560-570. doi: https://doi.org/pvf7
[35] Stanirowski PJ, Kociszewska A, Cendrowski K, Sawicki W.
Dialkylcarbamoyl chloride–impregnated dressing for the
prevention of surgical site infection in women undergoing
cesarean section: a pilot study. Arch Med Sci. [Internet].
2016;12(5):1036-1042. doi: https://doi.org/gm8t9t
[36] Susilo YB, Mattsby–Baltzer I, Arvidsson A, Husmark J. Significant
and rapid reduction of free endotoxin using a dialkylcarbamoyl
chloride–coated wound dressing. J. Wound Care. [Internet].
2022; 31(6):502-509. doi:https://doi.org/gqgbmf
[37] Falk P, Ivarsson ML. Effect of a DACC dressing on the growth
properties and proliferation rate of cultured fibroblasts. J.
Wound Care [Internet]. 2012; 21(7):327–332. doi: https://
doi.org/f34s9g
[38] Sutedja E, Widjaya MRH, Dharmadji HP, Suwarsa O, Pangastuti
M, Usman HA, Firdaus CP. Lupus Erythematosus Profundus
with multiple overlying cutaneous ulcerations: a rare case.
Clin. Cosmet. Investig. Dermatol. [Internet]. 2023; 16:2721-
2726. doi:https://doi.org/pvf9
[39] Słoniecka M, Le Roux S, Zhou Q, Danielson P. Substance P
enhances keratocyte migration and neutrophil recruitment
through interleukin-8. Mol. Pharmacol. [Internet]. 2016;
89(2):215–225. doi: https://doi.org/f3p6h7
[40] Galehdari H, Negahdari S, Kesmati M, Rezaie A, Shariati G.
Effect of the herbal mixture composed of aloe vera, henna,
adiantum capillus–veneris, and myrrha on wound healing in
streptozotocin–induced diabetic rats. BMC Complement. Med.
Ther. [Internet]. 2016;16:386. doi: https://doi.org/f86ns9
[41] Beserra FP, Gushiken LFS, Vieira AJ, Bérgamo DA, Bérgamo
PL, Oliveira de Souza M,Hussni CA, Takahira RK, Nóbrega RH,
Monteiro Martinez ER, Jackson CJ, De Azebedo Maia GL, Rozza
AL, Pellizzon CH. From inflammation to cutaneous repair: Topical
application of lupeol improves skin wound healing in rats by
modulating the cytokine levels, NF–kB, Ki-67, growth factor
expression, and distribution of collagen fibers. Int. J. Mol. Sci.
[Internet]. 2020; 21(14):4952. doi: https://doi.org/gkqbfj
[42] Sugawara T, Gallucci RM, Simeonova PP, Luster MI. Regulation
and role of interleukin 6 in wounded human epithelial
keratinocytes. Cytokine [Internet]. 2001; 15(6):328–336.
doi: https://doi.org/cf26q4