'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M391.5 182.8H408M56.2 347.8H72.4m349.3 33h16.2m277.4 231h17.2m-494.4 264h16.6m11.4 214.5h16.6m-177.9 33h8.1m65.8 0h16.2' class='g1'/%3E%0A%3Cimage preserveAspectRatio='none' x='52' y='494' width='394' height='222' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAN4BigMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsqgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAMTxL4jttBmtI57S6uDdeZt8gx/IEAOSHdSQSQOAeSM4HNb06PPCU3JK1t7639E156taLS70E3qYzfEOzEW8aBrRby0fYPs%2BcscFP9djK9TzjHQk8VosPTcre1ju1f3unX4dnsuvdJaiu%2Bw5fiBZGXZ/YesgeY6bsQEEAZD4EucMeAMZz1AHNT7CFr%2B0jsn9rq9vhtdbvpbZt6Bd9jrbWUz2sU5hkhMiBzHIAHTIzhgCRkdDzWE48knG97dVsUiWpAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAGyxpLG0UqK6OCrKwyGB6gj0pxk4u63A85%2BIHw%2B8BWPgXXb2y8EeGrW6g0%2BeSGaHSoEeN1QkMrBcgg8givp8pz3NKuOo06mJqOLlFNOcmmr7NXMZ0oKLaSPSK%2BXNgoAKACgAoAKACgAoAKACgAoAKAOD%2BKQX7fpBO3dsuMZgycfus4f8Ah7cfxcf3a6oN/V5%2BsevlLp19enzJe5ylcpQy4Cm3kDbNuw53khcY745xWlK/tI27iex634eEY0DThF5Hli1iC%2BQxaPGwY2luSvoTzitMW26873vd7779baX7hHZF%2BucYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHKePh4vhFrf8Ahu6jNrCT9utFt1eeRP70RY4LD%2B4cbh0IIwfYyr6hLmp4qPvP4XdqKfaVtbPutuzW0VFNr3N/z8vL%2BlpusT4S63q2v674lmn8SPqmm2d3HBbxtZJCVJgjZs4AYEMWBU981359g6GEoUIxo8k5Jtvmb%2B00vJ3VmmjmpVZTryjfRKLtbvc9Gr5g7DnPid/yTnxJ/wBgu4/9FtXp5L/yMaH%2BOP5oip8DOjrzCwoAKACgAoAKACgAoAKACgDnYfG3hSa2W5i1y0khaEzq6kkGMHBYcdM12zy/E05unKFmny2897EqaauTN4u8NLL5TaxbB/MWLGT95hlR07islhKzjzJaWb%2BSdn%2BI%2BZHH%2BOtc0zV77SP7MvluUEVwzeXPgDDRryh5bkHB7c/3q3lh50qE1NWd49L9G9%2BnTTr8ib3asYU0kcMTyyuqRopZmY4CgdSa89tJXZtTpyqTUIK7eiXdnJnXte11seF9P%2Bz2XX%2B0btfvgNg%2BVH1fIHGcA98da4YYitiJJUFaP80tt%2BiPr3kuW5TFvNarlV/59U907ac8npHXdK9ul9UvUrDwr46uNHjnm%2BJOqQXskW8J/ZdsiRsRlQyYJ44BG/qDgita2Frqcl7bW72St8r62%2BZzRznKIySjl6cdN5z5vPVNK/8A27byGS%2BJPGfhC/ePxbpZ13RpGQpq%2BkW2Gt84BWW33FsA87lJ4I4J4GDr18PL96uaPdLb1R0RyrKs2pJ5fU9lVV706j0lbVOM7JXe1nbXstX22gazpevaZFqWj30N5aSgFZI2zjgHBHUHBHB5rtp1YVY80HdHzONwOIwNZ0MRBxkuj/rVeaNCtDkCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOJ8eR3r%2BINPF8NfPhw28gmGjPMsoucjYZDbkTbNu77vy5xu7V72VyprDz9nye2urc/K1y9bc/uXvbfW23Uxrc948vw63tv0t523%2BHW9vs3KvgeNR4td/DzeIDoQtpVvv7WnuZP9KDpsCfaWMoIXzN2Pl6d62zOT%2BqJYnk9rdcvIor3bO9%2BRKNr2tfX5EW/ex5L9ea9/K2/X9N%2Bh6BXzZ0nOfE7/knPiT/sF3H/AKLavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFABQAUAFAHhuibP7GsfL8vZ9nj2%2BXAYVxtGMRnlB/s9uldePv9aqc178z3fM9%2Bsur8%2Bu5MfhRbrkKKc%2Bz%2B2bTPl7vIlxmElsZjzh%2Bijpkd%2BP7tdUL/V59rx66fa6dfJ9PmS9zmnjn8aXsizb4fDdtMU2hub90bBJx/wAsww6dyPy8Jp42TvpTT/8AAmv0PuY1KfDFGLhaWMnG97aUoyV1a/22n8l3vr1kiRpatGFiSMIV2k7UAx0OOg%2BletRVpxt3Wx8TOUptyk7tnr2gCNdC09YvJ8sWsYXyXLx42jG1m5K%2BhPJFa4tt15t3vd76PfqlpcmOyL1c4zzrxT4PvdAu73xd8P2Wx1Dy/NvNKSIfZtS2ZONgHyykZAZcZJ56knz62GlSbrYfR9V0f/BPscuzulj4Qy/N/ehe0ajfvU76bveK0unsttkjr/CniDTPE%2Biw6tpMxkgkyrKw2vE4%2B8jr/Cw6EV10a0K0OeGx87mWW4jLcQ8PiFZr7mujT6p9Ga1anAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBmeKNYh0HRJ9UmhknEZREijwGd3cIi5PAyzAZPSuvBYSWLrqlF2vfXskrt/ciZzUIuctkr/ccV8J9ehe4lsJLGW3uNXu9R1D/XCVEeK68mWPO1TjO0qSOQT0Ir3c9wUlFVFK6pqnHaztKHNF7vzT10OdVbVpOStzSa%2BcIqP4qN/wAO1/RpUEkbRsWAYFSVYqefQjkH3FfMRfK7o6jzn4g%2BCNGs/Auu3cV74laSHT55FE3iXUJUJCEjcjzlWHqGBB7ivp8pznEVMdRhKNOzlFaUqSe/RqCa9U7mM6aUXv8Aez0ivlzYKACgAoAKACgAoAKACgAoA8N0Xf8A2NZeYJQ/2ePd5s4mfO0Z3SDhz6sOvWuvH2%2BtVOW1uZ7LlW/SPRdl02Jj8KLdchRyfi2e41HXLbw7pVzNFcSQsbyWOcKIICy7jt6lzjavHG4n3HNXrVJxeGprezcusVron05u3W1%2Bh9TkmEw%2BDovNsZrGN1Tg0/fn%2BXLF6y18tb2fS6daQWFjBZWqbIIIxHGuc4AGBz3ranCNOKjHZHz2LxVXF1516rvKTbfqyaQsEYrv3AHGxQWz7A8E1tTtzK5zs9e0hpG0mzaXzvMMCFvOjCSZ2jO5V4VvUDgGrxCSqySta721W/RvVoS2LVYjCgDz7xZ4d1Pw9rdx438FW5lupADq2kK21NRQfxoP4ZgM4PfkdSc%2BfWozpTdeiteq7/8ABPrsszPD4/DxyzM5Wiv4dTrTb6PvB9V032WnYeG9ZsPEGhWes6bKJLW7iWROQSuRyrYJAYdCM9RXZSqxqwU47M%2Bdx%2BBrYDEzw1dWlF2f%2Bav0e68jRrQ4woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDH8Yvq8Ph%2B6utEnWO7t4nmVDb%2BcZtqkiMDcuCTjnNaUnBS99XXrb5mlKCnNRbtexwGgeK/E09t4TuJPFOharc6nNEt/YWViQ8ashLkHzCVCHGSw7HvivZr4OhCrVgoNRinaTemm3Tr0t3R59KvOpho1XpJ2066vVeq/Rnq9eEdgUAcP8Stce3%2B06ONOsryBdKn1G7W7LBZIo2UbEx0fJzu/hwK9/JsEp8tfncXzxgrW0bvq79PLqROXvRpreV99rK1/W9/uuYvwq0yw0DXLK3i0q3jk1jS3v4J0v7m7aFN6O8Zad3wGabdlSoZgSRmu/PcRVxlCcnNtU5qLXLGN3ZpO0UtlG2t2lpc46Li5U6yXxptbtq9m/LXq%2B6XkepV8id5znxO/5Jz4k/7Bdx/6LavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFABQAUAFAHhmiFDotiYvK2G3j2%2BVCYUxtGNqHlB6KenSuvH3WKq8178z3fM9%2Bslu%2B767kw%2BFDdf1OHSNJnv5sERr8iZGZH/AIVHqSeMV59esqNNzZ6WVZdUzHFww9Pq9X2XVvyS1Zj%2BGdLOnXVvNfSxz6rexyz3Urw5kLHy8qr4G1F4G09eMYxWuCoSp4ScpXbbi276XtLpu7dH017nXn2ZwxuIjToR5aNNcsF5J7vV%2B9LeT6vvudNQeIMnCmFw2zaVOd7FVxjuRyB71dK/OrdxPY9d0ERrodgsXk%2BWLaML5MhkTG0Y2seWHoTyRWmKbdebd73e6s9%2BqWz8gjsi7WAwoAKAPNdf064%2BHmr3Hi3QnA8O3UyvrmmnOyHJAa6hABIYZyygfMB6gY82pB4STqw%2BF/Ev1X6n2mCxUOIKEcvxS/fxTVKfV9qcu6e0W3o/Js4rQ7TTLzQbKb7NYXCTWSRl47UIjocMVCHlVLc7D0PXmvo6%2BY13WlKlVlbmbXv312T5lo3bTmW620PjKmHlRk6dWNpLRpqzXlY0ja2pl8020Jk84T7tgz5gG0Pn%2B9jjPXFcv1qvy8vO7Wtu9r3t6X1ttcnlXY6v4S21na32pxWsNnCEt7dRHFIQ6rumIzH91VyWww5J3Z%2B6K6MRXrV6EZ1ZOTcpavvaP2t29rp6JWtuxJJPQ9CrgKCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAKWuy30GiX0%2BmQrPfR20j20TdHkCkqp9icCmrNq%2BxpRjGVSKltfU8Z8JX3iRNa0eeXxTqNxd301nK9q%2Bl2cRuoJYiZ87bdZF8uRWz82RgA8nNfSYinh7TjGC5VzK95O1vhfxW1Vraa3POjOtOkpzXLK0dO0r2lHXt%2BVme5180doUAUNW0bSNWMJ1TS7K%2BMDbojcQLJsPqMjiuihi6%2BHv7GbjfezauKSUlZjNI0HRNIkll0rSLCweX/WNb26xl/qQOarEY3E4lJVqjkltdt/mJQipc1tTSrlKOc%2BJ3/JOfEn/YLuP/AEW1enkv/Ixof44/miKnwM6OvMLCgAoAKACgAoAKACgAoAKAPDdGDjR7IS%2Bd5gt493nTCV87Rnc44c%2BrDgnmurHOLxNRxtbmeyst%2BieqXZPbYmPwoxdSjXXPF9tYN81no5W7mHZp2BEa5/2QSxHuvBBrx6i9viFDpDV%2BvT7tz6zB1HlWUzxC/iYi8I%2BUE1zv/t5pRT8nZpo2pw/9r2pHm7PJl3YlATOUxlOrHrgjpz6ivXg19Xnte8emv2tn0XdddOx8m9y3XMUNkLCNiu/dg42KGbPsD1PtV07c6uDPXtGLtpFm0vm7zboW82MRvnaM7lHCn1A4FXiElWla1rvZ3W/R9V5iWxbrEYUAFADXVXQo6hlYYIIyCKBptO6Pl/wlczeE7bT9H1OKWPS7qNDZXUk4lMLsATDK4%2BXOc4YcHtWGLqLC42pTdvZuUuVpcqWr05X8K7LotD7GvhlxBhFjaDviIRXtIPeSStzxf2nb4t3fXqr93W58adb8MGl%2B3aop%2B0eUIoCuYVEW7Mmdr9WbGMqeANpH3jXTJR%2Brxel7vrrtHdbJdn117IXU7quYYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBi%2BM9IfWfD9zbQS3cV0sbvam3v57T97tITc8LqxXJ5GcflWtGq6U%2BZfik/waauaUuXnSntpf0PMvCWl3vmeFra0l%2BITa5ZTRtrj6vfX4tmVUIl3M7eRL85G0QlgeDyuTXu4mtT5qsvc9m0%2BWyjfXbS3Mn3va2vWx51ONX6vGNS/tNL22311WnLbb7W3XmPZ6%2BdO0KACgAoAbIgkjaNiwDAg7WKnn0I5H1FNOzuB558QvBukWngTXrqK88RNJDp07qJfEV/KhIQkbkeYqw9QQQe4r6XKc3r1MdRg4ws5RWlOmnv0agmvVamM6aUXv8Aez0WvmTYKACgAoAKACgAoAKACgAoA%2BfjqVvpfg2HUgsTRRWcbRpBEYkclQFVEblQSQAp5GQOtbZtUdGvWlO91KW7Td79WtG79Vu9jtynASzDE08NB25uvRLdv0Su/JD/AAlpkmmaQBdP5l9cu1xeSf3pXOT%2BA4A4HA6CuDC0XSp%2B98T1fqztz7MYY7Fv2StSglCC7Rjovm93q9Xuy1OU/tq0B8neYJtuYiXxmPOG6KOmQevGOhr04KX1ab1tePXTaW63b7Ppr3PDe6LtcpQ2bBhcNt27Tnc20fiR0HvV0vjVu4meuaEEGiWAj8rYLaPb5UpkTG0Y2ueWHoTyetaYq7rTvvd7qz36rp6BHYu1gMKACgAoA%2Bf7KxstV8GWtjMkD2lxYxriGExoFKDBRG5QDqAeRx6V0ZrS9piK1OpfWUr3ak93u1o35rRvU6cuxtXA16eJoO0otNf5ej6rsVvCd/PDPceHdVvRPqFlgxyPw9xAR8smO5HQ98jJ68%2BVhakk3RqO8l%2BK7/5nu57gqdSnDM8JT5aVTdLaE1vHyXWPSzstnb0z4XiL%2B1NWYeR5phtw2J2Mm3dLjdH0VeuGHLHcD90V68m/q0Vrbml002j13b7rpo%2BrPl/tHe1ylFXVp5LXSru6iVnkhgeRFVN5JCkgBcjP0yM1pRip1Ixeza62/Hp6iex5ynjHxQ8CsJ9NV2jj%2B9ZPw2fnJHmdxwB29TW7lh4ytyO139rp0%2Bz06vr2QtRw8X%2BJ/MybjTCnmOdv2N87CPkXPmdQeSe/oKlzw9vgd7L7XXq9uvRdO7CzN/wNrur6pfzW%2BpeW6x2yN5kNoyRl8kN8xc8njC44HOTVVI0nSc4K3vbXu7dNLLbv17IFe9mdfXIUFABQAUAFABQAUAFABQAUAFABQAUAFAGX4p8iLQ7u9njvpVs4JZ/KtLiSKSTbG2VGxgSSM4Hrg9QDV021LS2umu34/wBWNKUOecY92vzPIfBniG2uNd02eO31KSA3Fpasw8U390HuZoTKwWN5CjpGpXduHc%2BlfRYrDSgpwbV/e%2BxFaRdr3tpd3SsedCt7SmpqLStGWu/vPReqVm0e5V80doUAcp4%2B1vxHoQtrzS9KtLvTBkX88juZLUdn8tQS6euMkdcEZx7GVYPCYvmhWm4z%2BytLS8rt6PtfR97kVHJK8Vfv6eXd%2BX3XehR%2BHXibXvEOu67DenQ5dOsJo44JrB3Yyb4Y5Acnhh85547fWujN8uwuDoUZU%2BdTmm2pW0tJr1WxhTryqVXFWaSi/vv/AJHc18%2BdRznxO/5Jz4k/7Bdx/wCi2r08l/5GND/HH80RU%2BBnR15hYUAFABQAUAFABQAUAFABQB80ukupa54f0mYztDYWovrxZpRKzSBQkYd14LbizZ6NtJwayzPlrZi4RtypylomlvpZPVLqk%2Bm%2Bx9RlbWAyavi/t1GqcX1S%2BKbXR6JRbWqutVc6%2BtT5cqTCT%2B1rZh53liGUNiQBM5TGV6k9cEdOc9RXTBx9hNaXvHo7/a2eyXdddLbMT3LdcwxsufKbbuztONq7j%2BA7n2q6fxq/cTPXdFLnR7IyebvNvHu82IRPnaM7kHCn1UdOlXibe2nba72d1v0fX16gti5WIwoAKACgDwzQlkXRLBZvP8wW0Yfz5VkkztGdzrwzepHBPIrqxzi8TUcbW5nayaW/RPVLsnqtiY/Cin4n0KPWII5YpTaajbHfaXaD5om9PdT3B4NeZicMqyTTtJbPse7kudTy2coTjz0Z6Tg9pL9GujWqOn%2BAfiBtWutYsr1ZbXVLOG3W8tGgVUR8ygsj5JcHA4yQBtIPzGujD4hVcLFSSU1J3V9do9O3Z9dV0Kz3Jv7PrKpQlz0KmsJd12ei95bSVlbsj1imeEZ/iQKfDupB/L2/ZJc75Ci42Hqw5Ue/at8Lf20Lb3Wyu9%2Bi6%2BnUUtjyS2x9njxtxsGNrZHTse9Z1PjYIkqBnTfDQR/27eH9x5v2ZR/x8HzMbv8Ann02/wC11zxXVr9W625u2m3fe/l8yftHoNcpQUAFABQAUAFABQAUAFABQAUAFABQAUAUPEV3cWHh/Ub60SF7i3tZZYlmbahdUJAY8YGRyacUpSSfU1owU6kYy2bR5Z8K7zQb%2B00C/T4rCa/uI0mbSVi0u3BldR5kYiFuJk54xu3YAyT1r6DMaVSlOpBUPdV0pe%2B9Fs783L57W8jzqNZ1qaqVHyyerXZ9tdX2T6rVbnsVfPHYFAHD%2BP8AWLu01/T9NuPEL%2BFtHuIJJH1VYYiTOpG2DzJleKPKlm%2BZSW24UjBr38qwkKlCdWNL21RNLku9nvK0WpOzstHZX1Ma05RcEtne73ta1vJX11enTdoy/hqllpvi2507w3rsfiLSryCS8vrxLe2AhuQyKqmS1jjjJZSx2sC3y5ziuzOXUr4SNXFUvZTi1GMbz1jZt6TlKWjtqnbW25krRrJwd%2Ba99umzuvW1nvutmemV8odZznxO/wCSc%2BJP%2BwXcf%2Bi2r08l/wCRjQ/xx/NEVPgZ0deYWFABQAUAFABQAUAFABQBU1jULXSdKutTvpRFbWsTSysSBhVGT14qJzVOLlLZHRhcNUxVeFCkryk0l8z59%2BHNk0egx6nOIBPqKpMBCm1I4doEUajsqpjj9T1KSqyq1K1ZNTnJt82612ei1XXRa30PY4gxNH2sMFhXelRXKmtpP7UuvxSu1q9LW00OmrQ%2BfKVw0Y1uzU%2BT5hgmK7oyXxmPO1ugHTIPJ4x0NddNS%2BrTetrx6q20t1u32fTW%2B6JfxIu1yFDJyBBIWAICnILbR09e31q6fxr1EzptN8ePFo9qtvoIcLaRbAl%2BHUngFQ5GWAXkMetdtanRdeXPNr3n9mz9bX0d9LdCU3bYur49Yy7TorhPNZd32kfcxkNjHUnjHbrmudwo8t1PW3brfVb9tblXZX/4WLIJ44G0MCV7ZpQn21d25TjaBt5XJXLdtw4rb6vRcXNTdlJK/LpZ9d999OttxXZMPH8u7B0JwMx8/ah0P3/4f4f19qydOhb4316dtuvX8PMLvsB8fy440Jif3n/L0O33P4f4v096FTofzvp0779en4%2BQXfY4Hw00b%2BHdMaHyPKNpEU8iJo48bBjarcqvoDyBwavMVJYyqpXvzSvdpvd7taN92tG9gh8KNCuMow9RP2HX117S9PMmtabHFOksN4weaHewe3eHoVZdxVuu5cdBgzjMMvq0cRC/OpO2mjVldc3X/D0umt3f6PIMzScsuxUrUKujv9mX2ZrtZ7vqr32TXfaJ8U7TWrOO907SpJLd5QhLXAV0GPm3LjhgeNvfrnFaYeeGr0lUjPptbrfbf8Ty80yzE5XiZYfERs19zXRp9U/61E1fx3cT6HexnQ5YpHs5f9XMsrK/IUBdvzcc/Xiu6jSw6rxtO65lurK3Vt3010/E81t22Obt8/Z485zsGcrtPT07fSuKp8bKQ%2BoGdP8ADQyf23eDM/l/Zl/5dx5ed3/PTru/2emOa6tPq3S/N3127dvP5E9T0CuUoKACgAoAKACgAoAKACgAoAKACgAoAKAKurm9GlXZ01Y2vhA/2YSfcMm07c%2B2cU1a%2BuxpS5edc%2B19fQ8f8Eaj4yk1m206SPxcb9NThlvZdSs5UtvJ%2BzgXI8xlEJHm52LESMgFfkzX0GKp4WznHl5LSSs1ff3NPivbdvpe%2Bp50XXVNe0%2BNqG21/tbactr%2Be32j2qvnjtCgClrmqWejaXNqV87JBCBnapZmJIVVAHJJJAA9TW%2BGw1TE1VSprV/8O38lqKUlFOT2Rx3wt16zumu7Z57v7RqV9fX1tHcpgrGlwYnjzkjKMMEA4wwIr288wNSmozSVoRhFtd3HmT2XxL8tTCNVOtO%2Bl3ZesYxi196b9PRneSqXjZFkaMsCA64yvuMgjP1FfPRdndq50HnPxB8Nazb%2BBddnl%2BIPiW7jj0%2Bdmgmg08JKAhJVilqrYPQ7SD6EV9PlOY4eeOoxjhacW5R1Tq3Wu6vUa%2B9NeRjOD5X7z/D/ACPSK%2BXNgoAKACgAoAKACgAoAKAOF8ds%2Bv8Ai7RvA8fy2rqdU1Uno9vE4CQjv80hUnkcKeoJFcOJ/e1Y0Om79F0%2BbPqcmSwGBrZo/iX7uHlKSbcvlFO2j1fRpM4jSFkTSrNJfP8AMWBA3nyK8mdozuZeGb1I4J6V6%2BMcXiKjja13ayaW/RPVLsnqkfKxvZXLVcwyrMsh1W2Yef5YhlDbXAjzlMbl6k9cEcD5s9RXRBx9hJO17ro79dnsl376W2YuparnGR3Ofs8uM52HGF3Hp6d/pV0/jXqJkembv7Ntd2/d5KZ3x%2BW2cDqo%2B6fbtV4m3tp27vrfr36%2BvUFsWKxGU5d/9tW%2BPM2fZpc4hBXO6PGX6g9cL35P8NdUbfVpbX5o9ddpdOq7vpoupPUuVylBQBT0NZF0WxWb7R5otow/2iRXlztGd7LwzepHBPSunGuLxNRxtbmdrJpb9E9UuyeqW5MdkXK5iinFv/tq4z5mz7NFjMIC53SZw/Vj0yvbg/xV1St9Wjtfml112j06Ls%2Buq6E9TB8Q6dcaNfyeJ9FyDjOo2YUlblB1cAdJAOc9%2B/fPi16UqMnXpfNd/wDgn2OU4%2BlmVCOU4/8A7hzvrB9m3vB7W6dOltn7fY6n4elvbOeGe1lt2YN5uxcbTwzdU9D3HPpXp4GrGrUpzpu92tlfr26vy%2BR8zjsFXwNadDERcZR0af8AW3ZrRrVF63x9njxjGwYw24dPXv8AWip8bOZD6gDp/hp5f9uXnEPmfZl/5eTvxu/55dMf7X4V1a/Vutubtpt37%2BXzJ%2B0egVylBQAUAFABQAUAFABQAUAFABQAUAFABQBx3xOnlP8Awj2ki6ltrbVdVW2u3ilMbtEIpZCoYcjcUAOOcE13YCKc5yavyxbXqmkvzuZ15ONNtdWl97SM7xDZab4X1DQr/wAOytatPqsNpdQR3LNHPFJuUhkJIyCQQ2MjHXBNbYedTEc0Kuq5W9tmlfT7rE10o03Nbq34tJp%2BVn/kehV5ZsFAHHfErWdKt4rTQNX0vVbqPVX2QS2ojRFmQh0XzHdVWTKhlBPO3gHBFe5k2ErzcsTRnFOnunduz0eiTbWtm%2Bl9bGdZxULTV09H/wAHtfa%2Bmum9jmvg9YWFt4n1a1S18Vy3OlPJD5%2BsSWhSE3DLcyKogxy7OGyQ3AxkDivU4hr1Z4anNypqM7O0Oe75bwTfPfZK269Huc0VH6w073WvSycrtv52t1%2BWp6tXx52nOfE7/knPiT/sF3H/AKLavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFAFTUdS07TVhbUb%2B1sxPKIYTPMsfmSEEhFyRlsKTgc4B9K0p0alRScIt2V3ZXsu77LzE2luZMnjjwYlo13/wleiPCtu1zujvo3zEp2lwASSN3GR3461tVwOKopupSkrOzvF6O17bb21tvbUujB16kadPWUnZfPQ5b4Z%2BIdCuPt/inVtc0m11LXbtFjtpL2IPBCFJtoCN2Q5jJkK5zlycDoOHBYLE1IPEum/eXNs/gTtf07va7PoeI61KhOGW0pXjQ91vvUfxv79Fpslvucp4eaJ9A054Ps/lNaxFPs6MkW3YMbFbkL6A8gda9DMVJYyqpXvzSvdpvd7taN92tL7HzUPhRerjKKNwY/wC3bNT5HmG3mK7kJkxmPO09AOmQeT8uOhrrpqX1WbV7Xj1Vtpbre/btrfdEv4kXq5CiO5x9nlzjGw5y20dPXt9aun8a9fUTI9M2/wBm2u3bt8lMbZPMGMDo38Q9%2B9aYm/tp37vpbr26enQI7FisBlOXZ/bdvnZv%2BzS4zMQ2N0ecJ/EOmW7cD%2BKuqN/q0u3NHpptL7XT066voT1LlcpQUAZ/hlom8N6Y0P2fyjZxFPs6MkW3YMbFbkL6A8gda7cyUljKqle/NK92m93u1o33a0vsTD4UaFcRRTi2/wBt3GNm/wCzRZxMS2N0mMp/COuG78j%2BGuqV/q0e3NLpptH7XX06aPqT1LlcpRx3iHw/d6Y0%2BreFESKWRGF3YhAY7kHPzBTxvGcjseh9DxKk8LWWIoq9ndx25l5Po/M%2BwwWcUszof2fm0tPsVHq4Paz7wfVdN/NdB4c1Wy1jSYbyxnEqFdrArtZGHBVl/hIPb%2BldNPEQxC9pDZ/h5Hz%2BaZXicrxDw%2BIjZrr0a6NPqn/wNzRrQ886f4ab/wC27w/vfL%2BzL/y7DZnd/wA9euf9j8a6tPq3nzd9dv5f1%2BRPU9ArlKCgAoAKACgAoAKACgAoAKACgAoAKACgCnqul6bq1utvqmnWl/CrbxHcwrIobpnDAjPJ596unUnTfNB2fkHSxSs/CnhazuY7q08NaNbzxndHLFYxq6n1BC5FayxdeSs5u3qyXCL6GzXOUFAFfUbK01Gxlsb%2B3juLaZdskUi5VhWlGtUoTVSm7NbMDG8G%2BErDws2pNY3eoXP9oXCzSfa5vNKbUVFVWxnaFUAbiTx1ruzHNKuP9n7SKXIraK17tttra7b6WXkY06Eac3OPVJfd/wAP/kdDXmmxznxO/wCSc%2BJP%2BwXcf%2Bi2r08l/wCRjQ/xx/NEVPgZ0deYWFABQAUAFABQAUAcd8VBIdN0sp5%2B0ahl/LYBceTL98HkrnHA5ztPQGuii4qFS9ttL3v8S27O3fS11vYT6HkfiudNV1O18KQMrGf9/fgHmO3Ujg%2B7sVHfjP1rycVJVZrDrrq/T/gn1mR0ZYDDVM4qK3L7tPzqO%2Bv/AG6rvda231R0wGBgV3Hyj1KmjCRdIslm%2B0eYLeMP9odWlztGd5Xgt6kcZ6V0YxxeIqONrXdrXS36J6pdr623FHZFuucZWlEn9qW7Dz/LEUm7awEecpjcOpPXBHA%2BbPUV0QcfYSTte67367Pa3f5W6i6lmucZHc5%2Bzy4znYcYXcenp3%2BlXT%2BNevp%2BImR6ZuGm2obdu8lM7o/LOcDqv8P07VeJt7adu76369%2Bvr1BbFisRlOUN/bVuRv2/Zpc/uMrndHjMn8J6/L35P8NdMbfVpd%2BaPXyl9nr69NupPUuVzFBQBU0USro9ks32jzRbxh/tDq0u7aM7yvBb1I4znFdOMcXiKjja13blulv0T1S7X1tuKOyLdcwynEG/tq4J37fs0WP3GFzukziT%2BI9Pl/h4P8VdUrfVo9%2BaXXyj9np69duhPUuVylFfVNo0y6LbdvkvndL5YxtPVv4fr261vhr%2B2hbuul%2Bvbr6dRS2Oe1Tw07SprPhy5TTNUKZkZV3xXIx91x35x83XrXm4rCP2rq0Xyz16b%2Bq/qx9VlfEMFQWBzOHtaGltbSh5xfp9nZ6dN73hrxDBqpksrmP7Fq1vxc2UjfOpGPmX%2B8hyCGHqKeHxSq3jLSS3X9dDlznIamXqNek/aUJ/DNbPyfaSs7p9Uz0L4aFP7bvB%2B73/AGZf%2BXk7sbv%2BeXTH%2B3%2BFepr9W8ubt5fzfp8z577R6BXKUFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFADZFLRsquyEggMuMr7jPH5007O4Hn/xD0HVYfAevTSeNtfuUTTp2aGWGxCSARn5W224bB6cEH0Ir6TKMdQlj6MVhoJuUdU6l1rvrNr700Yzi%2BV6/l/kehV80bBQAUAFABQAUAFAHnfx51O30jw5pd9OsEjJqOIY3DF5ZDbzhUjx0c9Oc8bu%2BK3jVdLD1566RW1v542v3V7ba3t0ud2W5fLMMXTw8Xa71fRJJtt%2BSV276HB%2BFNMubG1lu9SZX1O9fzrplYlVP8KLnkKo4A%2BtedhaMoRcp/FLV/wCS8kd2e5jRxVWNHCq1GmuWF9G%2B8pW%2B1J6t%2Bmhs11Hhmf4ZMbeG9LaH7OYzZxFPs6ssWNgxsDchfQHnGM125kpLGVVK9%2BaV%2Ba193vbS/e2lyYfCjQriKKFwY/7esgfs/mG3n27lPmY3R52noB0znn7uO9dlNS%2Bq1Gr2vHtbaW/W/b536Ev4kX64yiO5x9nlzjGw9W29vXt9aun8a9fX8BMj0wg6balcYMKYxL5g%2B6P4/wCL69%2BtaYm/tp37vpbr26enQFsWKwGU5Sv9t24%2BXd9mlx%2B/wcbo/wDln/EOnzfw8D%2BKuqKf1aT/AL0enlL7XT0679CftFyuUoKAM7wuY28M6W0P2YxGzhKfZlZYsbBjYG5C%2BgPOMZruzNSWNrKV780r81nLd720v3tpfYmHwo0a4SinEV/tu4Hy7vs0RP7/ACcbpP8Aln/COvzfxcj%2BGuqSf1aP%2BKXTyj9rr6dN%2BpP2i5XKUV9UBOm3QXOTC%2BMReYfun%2BD%2BL6d%2Blb4a3toX7rrbr36evQUtiW3z9njznOwdV29vTt9KzqfG/wDhwRma94e03WTHJcpJFcxZ8q6t38uaPgjhh9Twcj2rkr4WnW1lo11W57WV57i8svGk1KEt4SV4vrqvlurPzDwT4i1fwHrUsnigzan4ekiSNtYjs8GzJYBRMQCSCeOD1wSORiPa18JR/fSUoX3%2B0tOqva3na9%2BvQ9z%2Bz8u4gT/s2HssQlf2bd4z3b5G9U0teV6W22bfuWkalp%2Br6dDqOl3sF7ZzAmOaCQOjYJBwR6EEH0IIrohONSPNF3R8jisLWwlV0a8HGS3TVmW6swCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDjPG89/H4isI7mXW4NAa2kMkmkwSSSG43Dar%2BUrSBNu48YGcZPQH3cshSeHm4KDq3VlNpLl625mot3tvrbYyqualG22t/wt8t9tdulyLwpNdt4sVNMm8QXGiGykNy2rQzJsnDp5ezzlVzlTJnHy8DvVY6EFhL1VBVOZW5HF%2B7Z3vytre1upF37SPJe2t77dLfO/4b9DuK8A6DnPid/wAk58Sf9gu4/wDRbV6eS/8AIxof44/miKnwM6OvMLCgAoAKACgAoAjuJobe3kuLiVIYYlLySOwVUUDJJJ4AA70m0ldlQhKpJQgrt6JLds8S8Tyah441DTfFk6n/AIRi1vZINJt0wftDbXzdy56LmPai43DdnjnPJhoLGSlWnblivdTvq7pXVtL2va%2Blr9bH2OPqx4fwjy%2Bi39YqW9rL%2BVWv7NfenJp7pLVbWq7D4wKAKujiQaTZib7SJBAm/wC0FTLnaM7yvBb1xxnOK6MW4vET5bWu7ct7b9L627X1tuKOyLVc4ytKJP7StyPtHl%2BVJu2lfLzlMbh1z1xjj72e1bx5fYy2vdd79dulu/yt1F1LNYDI7nP2eTHXYf4d3b07/Srp/GvX0/ETI9MBGm2oOciFM5i8s9B/B/D9O3StMS71p27vrfr36%2BvUFsWKwGU5Qf7btzztFtKD%2B4yPvR/8tP4f93%2BLr/DXVFr6tJf3o9fKX2evr026k/aLlcpQUAVdGEg0izE32kSi3Tf9pKmXO0Z3leC3rjjOcV0YxxeIqctrXduW/Lv0vrbtfW24o7ItVzjKcQb%2B27g87fs0QH7jAzuk/wCWn8X%2B7/D1/irqk19Wiv70uvlH7PT167fZJ%2B0XK5SivqhA0y6JxgQvnMvlj7p/j/h%2BvbrW%2BG1rQt3XS/Xt19OopbEtv/x7x4/uD%2BLd29e/1rOp8b/4b8AQ%2BoGdN8N/LfWb2NlRs2oyDc9Ru/54%2Bn%2B3%2BFdNv9m/7e7eX836fMSbUrom1L4ZaSt1cah4X1C/8KahMjBn01wsMjclTJCRtYAnttOOMivIngIXcqTcH5bfNH1WH4sxLhGjjoRxEF0n8SXXlktVdd7q%2BtmYPiPXPHejeF9X0jxbol1qkM9nPDDrXh0ESDMJAZousb5z84%2BUHHAAydsFja%2BDxEJ1oKSi072utGn70d7d7G9bKMpzSLnltf2Ura06jS6/Zns%2Bmj183suX0HxLouuTldM12eaceXKY/tcqt8g%2BU7Secd8cetdFDOFXXLCaej6L7W/T/huljyc04azLKlz4ui4xva%2B6%2B9beV9zYKuU2G7vsbZF/4%2B5Oj/e/i/8A1dsV1fXKqd7rp0X2dun/AA/W54fKjqvhXcFtY1m0a7ilMVtaP5bSSvOgJmUFixKbCI8Lt%2BbKvuz8tb4hyng6dSSespq%2BltoOytrdX1vpZq3US0k0d/XnFhQAUAFABQAUAFABQAUAFABQAUAFAHF%2BN7W/l8RWE1xaarf6Ets6yW%2BnTFHFxkFXcKysy7dw4PBPIr3csq0o4ecYyjGrdWcldcvVK6aTvb5GVVTco221v%2BFvlv8AeiPwpZXUfi1bjTbDWNO0YWUiXMWozs/mTl0MZRXdiMKHyeByKrH1oSwnLVlGVTmVnFJWVne7SW7tYz5X7SLgmt7/AKfO/Xt6ncV4B0nOfE7/AJJz4k/7Bdx/6LavTyX/AJGND/HH80RU%2BBnR15hYUAFABQAUAYXi/wAWaF4Ut7eTWLsxyXUnl2tvGhkmuH4G1EXljyPzHqKwr4mnQSc3vt3Z6mV5NjM0lJYaN1FXk27Riu7b0W359jj/AOzvE/xHuIn8QWT6D4RDCT%2BzJMreX2ApUT4OEjzk7Qc8YPtyclXFv94uWHbq/XyPovrOX8PRawc/a4rbnXwQ3vydXK3V6dV56fxThtrfS9At4orSGOPUQkEZUjaBbTgCMLwCBnrxt3d8V7uFTVKso3tyra1rc0d/L0626XPias5VJ883dt3be7f%2BZyVcgBQBneGPLPhrSzD9m8v7HFs%2BzhhFjYMbN3O30zzjGa7cy5vrlbmvfmlfmtfd720v3tpfYmHwo0a4iihc%2BX/b1ln7P5n2efbuB8zG6PO3tjpnPP3cd67KfN9Vqb2vHtbaW/W/b536Ev4kX64yiO54t5T/ALB/i29vXt9aun8a9fX8BMj0wg6bakdDCn/LXzOw/j/i%2BvfrWmJ0rT9X0t17dPToC2LFYDKcpH9t244z9mlP%2Bvx/FH/yz/i/3v4en8VdUV/s0n/ej08pfa6enXfoT1LlcpQUAZ3hfyz4Z0ow/ZvK%2Bxw7PswYRY2DGzdzt9M84xmu7M%2Bb67W5r35pX5rc273tpfvbS%2BxMPhRo1wlFOIj%2B27heMi2iP%2Bvz/FJ/yz/h/wB7%2BLp/DXVJf7NF/wB6XTyj9rr6dN/tE9S5XKUV9UBOmXQHUwv/AMsvM/hP8H8X079K3wztWh6rrbr36evQUtiW3/494/8AcH8O3t6dvpWdT43/AMP%2BI0PqAOn%2BGgP9t3jc4%2BzKP%2BPXj73/AD1/9k/Guq/%2BzW/vd/L%2BX9fkT9o9ArlKMH4ieWPh/wCIjN9n8v8Asq63/aAxix5TZ37edvrjnGcV25bzfXKXLe/NG3La%2B62vpftfS5M/hZ5Frnh/SdaKPf2itNGQY50JSVMHIw45HNeVWwtKt8a179fvPZyzPcdll44edou94vWLurO8Xo9DLPhrV7Rx/Y3iu9t4juzFeRC6AycjaWII79SfwrD6pVh/CqtLz1PV/wBYcBiF/t2BjKWmsG6b%2BaSafTZL5m/8PX%2BKukavqLW1vZeJtJZIQFllFliT95u8sgMAR8m7IOQY8Y%2BaumX1qnh4fBP3pd1K1o2vvHl35ba35r9Bt8N41ae0w8rf9fI7v/DK7Xokdonj/U4IYZdV%2BHniq0VsCVooY7kRsR2Ebl2GeM7fwFc/1yaV50pL7n%2BWpD4bw85ONDHUpPpduN/nJKKflf7wl%2BLHhCznSLWW1XRPMVmifU9Nmt1k2kZCll5I3Ch5jRi7TvH1TQR4NzOtFyw3LVtvyTjK172vZ6bGnp/xF8CX9sLi38X6KEJI/e3iRNx/suQf0rSONw8ldTX3nFX4YzihPknhp38ot/iro29I1fSdYhefSNUstQiRtjvazrKqtjOCVJwa3hUhUV4NP0PLxWCxOEko4inKDfSSa/MvVZzBQAUAFABQAUAFABQAUAUNfgmuNJuI4dSk01gpY3CCMlQOTnzFK49SRXRhZxhVTlDn8tf0aZUN0ct8FoPsXgPSLF/EcGsSRWMKlYZoJI4do2kI0QG5dykZJPQ816/Ec/a46rUVFwTk91JN311UtnZ3srbnDg48kHFvrLT/ALef9M7aQFo2VXKEggMAMj35rwU7O7Ow5bVPCepanptzp194z1iW1uomhmQW9ou5GGCMiHI4PavXoZpRoVI1aeHipRd1rPdf9vGbg2rNnV145oYHifw/fazcxS23irWtHSNNpisTEFc5%2B8d6Mc9uuKwrUZVHdTa9Lf5HrZdmVLBwcZ4eFRvrLm08laSRkf8ACDat/wBFH8W/9923/wAZrH6pP/n7L8P8j0P9YcN/0A0vun/8mH/CDat/0Ufxb/33bf8Axmj6pP8A5%2By/D/IP9YcN/wBANL7p/wDyYyT4fXVwVS/8e%2BLrq3DbmiF3HDu%2BrRxqw/Aik8G38VSTXrb8kVHiWnTu6WDoxl35W7fKUmvwNHwr4A8J%2BGr46jpWkouoMrK95K7STPuOWJZieT3PWtKODo0XzQWvfqceZcSZlmVP2Nep7mlopJRVtrJdF2OorqPDMvxJosWt2sNvLdXFusUhkBhK/MTG6DOQcgF931Udsg60qkYX5oqV%2B9%2B6fRrtb0b6iauYa%2BArMR7TquoFtsQ3YizlPvn7mMv37D%2BHbWrr0r39muvWXXbr9np363FZ9xT4Ds/M3f2rqAXfK2393jDj5V%2B5nCdR3P8AFupe3p2t7NdOsum73%2B11/CwWfcZD8P7OO0WD%2B2NTdlhhj81zGWLJ95z8mCz9G7D%2BELVzxNOU3L2SV23b3ra7LfaPTr3uFnbcePAdkJQ51XUCvmyvs/d42sMKn3M4Q8g9T/ETUe3p2t7NbLrLpu9%2BvXp2sFn3Im%2BH1oZVk/tvVBizNvtHlYMhx%2B/Pyff46fd5Py1axNJRt7KPxX3lt/Lvt%2BPmHK%2B5K3gOyM28apqAXzY32Dy8bVGGT7mcOeSeo7EDioVana3s1s%2Bsuuz36bLp3TCz7jT4BsTAYn1TUGJiljLERZJc5V8bMZQcAdD/ABA0/rFNS5lTW6e8um6367vqujQWfcYPh7ZJaLbxatqEW23SFWRYRhlbJcDZjJHy4xtA6AHmqeKpym5ypp3be8uvTe%2Bj1vvfdtByu25OngWwE/mHUL5k89pPLOzGwrgR5252g/MDndnqSOKzdWm429mtrXu97777vbt2Vx2fcrf8K7sTNHMdX1AyJaNbhykO7c3Pm58vhvu/KPlO0ZU1t9bp8riqas5J2vLp0%2BLbfXfV6i5X3Jl8B2YfcdV1AjMJ2ny8YT74%2B5/H39P4dtZuvTt/DXXrLrt1%2Bz079bhZ9wbwHZkYGq6gvE3I8v8Aj%2B5/B/B29f4t1Cr0v%2Bfa6dZdN%2Bv2uvbpYLPuNt/h/ZwwJEdY1OXasC7nMZY7PvknZyZP4vT%2BHbVVMTTnJy9klfm25uu3X7PT8bgk%2B45vAVmXyNV1BRmY4Hl/x/cH3P4O3r/FuqVXpW/hrp1l036/a69ulgs%2B5D/wruyE0kw1fUFke0W3LhId25efNz5fLct8p%2BUbjhRWn1unyqLpKyk3a8uvT4vTXfRahyvuWn8C2Bn8wahfKnnrJ5Y2Y2BcGPO3O0n5ic7s9CBxWKq01G3s1ta93vfffdbdvK47PuVpPh5Zy2Mlq%2Bt6rl7aSEyr5SuGY5EgwnDKOB27kE81tDF0oVFNUo6NO3vNadN9nu%2BvnYXK7WuPh8AWcewHV9SdVeRsN5fzKy4VSdmcIeQepP3iRUTxFOV/3S1t1l03e/XZ9F0sFn3HN4CszDsGraiG8qNN%2BIs7lOWf7mMuOCOg7AHmkq9K9/ZLd9Zddlv03XXu2Fn3JbHwdJp93dXOn%2BJdXtmuFZVQCFkiBdWGFZCCQAVBOThjnJwRtDG0owUHRi7Wf2rvRre/Xeysrr1Fyu97mkNK1Tzg/wDwk%2BolfOD7PIt8bR1T/V5wfXr71P1qja3sY7W3l9/xb/h5D5X3K994f1K802Wxl8WaqFltmgeRIbYOSzElwfK4badvHGBnGeaqGMoRnzewjve15W22%2BLa%2BvfztoLlfcpp4FsBP5h1C%2BZPPaTyzsxsK4EedudoPzA53Z6kjiud1qbjb2a2te73vvvu9u3ZXKs%2B5C3w/tjB5Y1vU1fyFi8wLDneGyZcbMbiPlxjbjoM81osRS5r%2ByW97Xltbbfbr387Cs%2B5seHPDWn6He397bGSS4vSivJJjKxpuKRjAGVUvIRnJy556YiriZTpQo2tGN3bzdrvXq0ktNNNhqNnc265hhQBj33hbwxf3cl3feHNHuriQ5eWayjd2PTklcmsZYelJ3lFN%2BiPRo5xmFCCp0q84xWyUpJL5JmNqPwu%2BH1/cm4ufCWmeYQB%2B7j8sYHspA/SsZYDDTd3BHpUOLs7oQ5IYmVvN3/F3ZUl%2BEHw6aMiLw1BbSdVlgldJEPYqwbgj1qXluF6Qsbx42zxP3sQ5Ls0mn5NW1RteGfCFhoF%2B95a6jrdy7xGIpe6nNcIASDkK7EA8devX1ralho0pXTb9W2ebmGdVsfTVOpCEUnf3YRi%2BvVJO2ux0VdB44UAFABQAUAFABQByfxQl0ybw3Jo95qcVpc3hVreMxtK0xjdXKmNAWZDtwxA4Br2ckjWjiVXhDmUd3dK101u9E9brzRnWUZU3CTtzJr710XXvbscb8GtOuV18S6je6VFc2UF75VpaNP5kiXV155dvOiiO1DhBhSMknIzivb4ixEHh%2BWlGTUnC7fLZOEOWy5ZSV3u7tdrPc5YxbratLWUut3zPb0XXe7ttbX16vizuCgAoA4W%2B8NeHPEHxQ1Zte8P6VqrQaLp4iN7ZxzGMGe9zt3g4zgdPSvoKWY4vB5ZSWHqyhedS/LJq/u097MycIym7rov1NH/hXHw8/wChD8Lf%2BCiD/wCIrm/1gzX/AKCqn/gcv8x%2Byp/yoP8AhXHw8/6EPwt/4KIP/iKP9YM1/wCgqp/4HL/MPZU/5UH/AArj4ef9CH4W/wDBRB/8RR/rBmv/AEFVP/A5f5h7Kn/Kg/4Vx8PP%2BhD8Lf8Agog/%2BIo/1gzX/oKqf%2BBy/wAw9lT/AJUH/CuPh5/0Ifhb/wAFEH/xFH%2BsGa/9BVT/AMDl/mHsqf8AKjA8T/D/AMBxa54Vji8E%2BGo0m1WRJVXSoAHX7Fcthht5G5VOD3APavRwWe5nKhiG8TPSCt78tP3kF37NoiVKF1ov6TN//hXHw8/6EPwt/wCCiD/4ivO/1gzX/oKqf%2BBy/wAy/ZU/5UH/AArj4ef9CH4W/wDBRB/8RR/rBmv/AEFVP/A5f5h7Kn/Kg/4Vx8PP%2BhD8Lf8Agog/%2BIo/1gzX/oKqf%2BBy/wAw9lT/AJUH/CuPh5/0Ifhb/wAFEH/xFH%2BsGa/9BVT/AMDl/mHsqf8AKg/4Vx8PP%2BhD8Lf%2BCiD/AOIo/wBYM1/6Cqn/AIHL/MPZU/5Uc18SPAHgS18PWslt4K8NwO2taVGWj0uBSUfULdXXIXoVYqR3BI716uT55mdTESU8TNrkqvWct1Sm09%2Bj1XmRUpQS2W6/M6X/AIVx8PP%2BhD8Lf%2BCiD/4ivK/1gzX/AKCqn/gcv8y/ZU/5UH/CuPh5/wBCH4W/8FEH/wARR/rBmv8A0FVP/A5f5h7Kn/Kg/wCFcfDz/oQ/C3/gog/%2BIo/1gzX/AKCqn/gcv8w9lT/lQf8ACuPh5/0Ifhb/AMFEH/xFH%2BsGa/8AQVU/8Dl/mHsqf8qD/hXHw8/6EPwt/wCCiD/4ij/WDNf%2Bgqp/4HL/ADD2VP8AlQf8K4%2BHn/Qh%2BFv/AAUQf/EUf6wZr/0FVP8AwOX%2BYeyp/wAqOc%2BF/gDwJd/DPwtdXXgrw3PcTaNaSSyyaXAzuxhQlmJXJJJySa9TO88zOnmWIhDEzSU5pJTlZLmfmRTpQcFotjo/%2BFcfDz/oQ/C3/gog/wDiK8v/AFgzX/oKqf8Agcv8y/ZU/wCVB/wrj4ef9CH4W/8ABRB/8RR/rBmv/QVU/wDA5f5h7Kn/ACoP%2BFcfDz/oQ/C3/gog/wDiKP8AWDNf%2Bgqp/wCBy/zD2VP%2BVB/wrj4ef9CH4W/8FEH/AMRR/rBmv/QVU/8AA5f5h7Kn/Kg/4Vx8PP8AoQ/C3/gog/8AiKP9YM1/6Cqn/gcv8w9lT/lRzPw18A%2BBLrw7dS3Pgrw3O663q0YaTS4WIRNQuFRcleiqoUDsAAOlernOeZnTxEVDEzS9nSek5bulBt79Xq/MinSg1st3%2BZ03/CuPh5/0Ifhb/wAFEH/xFeV/rBmv/QVU/wDA5f5l%2Byp/yoP%2BFcfDz/oQ/C3/AIKIP/iKP9YM1/6Cqn/gcv8AMPZU/wCVB/wrj4ef9CH4W/8ABRB/8RR/rBmv/QVU/wDA5f5h7Kn/ACoP%2BFcfDz/oQ/C3/gog/wDiKP8AWDNf%2Bgqp/wCBy/zD2VP%2BVB/wrj4ef9CH4W/8FEH/AMRR/rBmv/QVU/8AA5f5h7Kn/Kjl9N8A%2BBW%2BK%2Bv2jeCvDbW0Wh6ZJHCdLhKI7T34Zgu3AJCICe%2B1fQV61bPMzWVUZrETu6lRX55Xso0rLfpd29X3M1ShztWWy/U6j/hXHw8/6EPwt/4KIP8A4ivJ/wBYM1/6Cqn/AIHL/M09lT/lQf8ACuPh5/0Ifhb/AMFEH/xFH%2BsGa/8AQVU/8Dl/mHsqf8qD/hXHw8/6EPwt/wCCiD/4ij/WDNf%2Bgqp/4HL/ADD2VP8AlQf8K4%2BHn/Qh%2BFv/AAUQf/EUf6wZr/0FVP8AwOX%2BYeyp/wAqD/hXHw8/6EPwt/4KIP8A4ij/AFgzX/oKqf8Agcv8w9lT/lRnWPhrw54f%2BKWkNoOgaVpTT6JqIlNlZxwGQCeyxu2AZxk9fU11VcxxeMyuqsRVlO1Snbmk3b3au12JQjGasuj/AEO6r541CgAoAKACgAoAKAOe13Qb%2B48QW2vaNqkFjfRWz2ji5tDcQyRMwb7odCGDKOQ3qCDxj0sLjqUMPLDV4OUW1LR8rTStu1JWs9rfMznT5pRknZxv%2BNr3%2B5DdM0HU/wDhI4dd1vVrW8ube1ktoI7Sya3jVZGRmLBpJCxzGuOQBzxTrY2j9XeHw9NxTabvLmeiaVrRiktX0%2BYnTlKUXJ/Df8To68w1CgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPOfDniu/kvrm71rUL22Q3N4LWyk00xRSxxmTYqysoLPsTfwex9K%2BnxmWUowjChBN2heSldpu17xT0V3YxU37Zxk7Lmsvutq/N3a%2BS3KMnjvWdE0O01/V5oryDUtGudSjtlhWPyHijEqxhgfmBU4ycnIz7V0RyTD4qvLDUU4uE4wbve6b5W7dHfXQypV3JQqS%2BGTenkk3%2BSZ0PhnVtbg8UW%2Bh63ew3zX2l/wBoRSJAIjE6sqyR8HlfnUg9eDkmvMxuFw08LLEYeLjyz5Xre6abT9dHfoFKrJqnKX209OzVn%2BTt8vM7OvDOsKAEY4UkAkgdB3oQ0eZxeOfE1vonjG%2B1bSrSzu9NvIoLC0Eok2CVI9nmsMAtufJCnA6AnrX1csmwc62Fp0ZuUZxbk7W%2BFu/Ku1lpfXq0tjjniZU3VlKOkI81ur%2BL7r2XoO1XxVruhajfeGri/ivdRP2D7JeNbKmBcyvExZAcHaYyR65ANKhlmGxdOGKjHlh7/NG7fwJSVn53sTVrToe7J3bjdadeZRfyu0181cW68V63baufCJvo5NTk1eKyjvzbqCIXt3nLlM4LARsvpyDilDLMNOl9d5bQUHJxu91JRtfe2qZdWrKk5Rvd%2B7b/ALebX4Wb%2B46fwLq15qMOqWWoyJNeaVqEllJMibBMAFZX25OCVcZ7ZBxivJzPC06MqdSkrRqRUkt7bpq/qtPI1hJ%2B0nTbva33NJr7r2OjrzDUKAOL0zxH4hl%2BImraTqOlw2WlW2n/AGizAlEk8%2BHKtIwXhQcfKuSccnBOB7tbL8LHL6dalNym5WlpZLS9lfVtdXZLtdamTnL28adrJ31725fw1fn5IwdI8a6jZ%2BFLzW9bv7tr%2BPS5b1NPuNO%2BzISozhGZQXAyoPPfNejiMno1cVHD4eK5HNR5lLmevdJtK%2BrIhVd7z0%2BJ28ld797f1YPEPjPX/CkcllqF1BqV7eWdrLZSGARiKaa4S3KkA/MitKrDvwRmjCZRhcwaqU4uEYykpK97qMXO%2B2jaTXbyMZYmVKl7Wet4SlbzSVl6NtI6jwnqmpjxRrHhjV7tL6axht7qG6WERF4pt42soOMho25GOCO4yfIx%2BGo/VaWLox5VJyi1e9nG2z80187nQnKFVU5O943/ABaf5XXrbodVXkGwUAeffE3VvF3h6y1TX7XU9Nis7WOIaZpwtzLLqEx6xOeCrOcIoTOOpz0r6TJcLgMZOnhpwk5SvzSvZQXdd0lq7%2Bi7mNeUoqUk1FJXvvd9rdtkrO7b6WV4LvxdrS/b9fE8cOmafrEOmvYmFWZ1Zo0eQvnIYNJwBxhe%2Ba1p5Vh3yYa15zg581%2BybSt2svXU55YifJUqNcvIk2t%2Bik/wdl5rzC28Xavm18QTXUR0m61qTTBZiBcoiu8ayB85LbkyR0wcY70p5VQ97DRj%2B8jBT5r7tpNq3az%2B9GrqSbk19mSj66pP8X%2BAnhHxdrd6fCesX88MmneKxJ5NqsIVrQ%2BW0sWHB%2BbKIQ2e5BGOlPMMqw1L6zQppqdC13f4tVGWnTV6W6b3JVdyiqqfu87jby95J/8Akuvr5HpNfLHWFAHLeOJNftlkv7TXdO0TSLSzkmnnlh82RpR90ENhRGBnODuJIAxXr5ZHCzapzpSqVJSSSTsrddtb/giZKTaSdlrd9vTp5tvta2t1y0fi/wAQXh0qe/a/0O3fRYL28MGltOqTPksGYqQigDPPIzzXrvKsLT9pGnao1OUY3na6W1ldXb%2B7scsK1SdOMmrXT6dnZO3mtfmixrfi/V0bxHrGm3sH9m%2BG5II5IDCrfbA0ccsjb85X5ZBtx3HORxWWGyrDv2FCrF89ZSd7/DZuK066rXy7FTqtuag/hipX76N/dZfj5ER8bawY38TrPD/YqeIl0UWXkjcYzOLYzeZnO7zG3Y6bRjGeav8AsfD3WEs/aez9pzX68vPy27cune%2Bu2hE8S3GrUjoqbj89IuXp8Wnprvp6fXyZ2hQBm%2BI11dtO2aLPa287SIJJpwW8qLPzsqgHc%2BM4BwM9fQ9WDdBVL102rOyXV9E30V92tewpczi1Hfp/XktfN6abnB6R4x1nVYrLSbe%2BjFxdaxcWSagbcBzBFH5hcxHG1z93BHT5scivosRlOHw7nWlHSMIy5b6c0na3Mt0t/wAL6HK6zV4p395JejV3%2BqX3kmmeKtc1nUbDw1b38VpqAlv0u71bdWyts6ICqE4BYyKT6YOKitlmGw1OeLlHmhaFo3f203q/KzG6rjP2b1fM1fyUeb79Uv0KujeNPEXiiY6fpdxa6deWGkteXkhgEiTT%2BdLCqAFsqhMDk855ABGOdsRlGEwC9pWTlGc%2BWKvZqPLGTe2r95JdN9B05yqVYYe%2Br5k3b%2BVqKdvNtv5W6ne%2BDdaTxH4S0jX44jEuo2cVz5ZOdm9A238M4r5zMcG8Fi6uGbvySav6OxWGrOtSjN7/AK9TXrjNypq/9o/2Xc/2SLY3/ln7P9pZhFv7FtoJx9K2w/svax9tflvrbe3lcL2PPJ/FmvWth4ps7e9Op3emC3S3uBYESeZIxVx5Sj51UjIYDByRzivpo5Xhak8POUeSM%2Ba65tLJXXvPZvtf8zmU5xcot3ajftrr%2BGxPdeKr2G303SbTV7ifVdU1VLAyXlgsMlmpieVmMRC5ykbYz3PfGKzhllOUqladNKnCDl7srqWqjbm16tXFOtyU2763il/287X9LXfysQWnizxBfeIY/BSXsEOpxX91Dc6itupzBFFHIrLGTgO3nRqeo4YgDIxpUyvC0sO8e4twcYtRv9qTaabtey5W11217qrWlSqqju3JK/ZODn96ty/O/kdX8Otdn8Q%2BGReXaot3Bd3NlcbBhWkgmeJmAycBtm7HbNeNm%2BCjg8TyQ%2BFqMl6SipJfK9jWjNtzhLVxbXrbb8LX8zo68w2CgAoAKACgAoAKACgBKAORuvCeoandWUevaxDqFhYXT3MCfZdkzMVdVEjhtpCiQ42qv3R759qGaUqEJvD03Gckk9bq103ZWvrbq3uzCpSc7Rb926l56PmS9E7dL6LXcz7f4ePPYxaZrerJe6faabPptmkVuYnWOVdhZ2LtuYKAAQFHU4rpnnyhN1aEOWcpRnK7urxd9FZWV9eoU6PI4q/uxbdvXTf0bRreGvDWoWWsJq2tatDqF1BYiwtvJtjCqx7gzMwLtudiFyeBxwK48bmNKrRdGhBxi5czu767K2islr9%2B4qdBw5It3UFZd9bat%2BiX4nU15B0BQAUAclqXguO/g8Twz37quuSxyq0aYa3aONFUg5%2Bb5kDdvSvZo5u6MsPKMf4Sa9U22/TR2MZ0I1JTctpRUX%2BPX5lO68D32om%2B1DVNZgk1m4NqYbi3tWjih%2BzOzx/uy5JyzsT83OcDFbwzmlR5KdGm/Zrmum7t86SetlbRK2hEsO6n8R3drK2nW9/m0vusLN4HvZ3bVZdXg/t7%2B0o9QS5W1YQKyRGIJ5e/JXYzA/NnJzSjnNOK9iqb9lyuNrq%2Br5r3ta90uhU6LnzOT1fLby5Xdfje/qb3hLRH0W0uzcXQu72%2Bu3u7qZY9itI2BhVydqgKoAyenWvPx%2BMWKnHljyxilFLfRd3pdt3excYNSlOW7/RWX4G1XAaBQBiyaGzeLJddW8MZk077EI1TlTvLbwTx36YrvWNSwiw7je0ub8LW/pkShepGfZP8bf5GHf8Agi81xQnibV4b9YbGezgeC1MMmJlCNI53EF8D%2BEKOTxXfSzmnhdcJTcbyjJ3d17ruktFpfu2/Mz9i5OPM7qN353aa39G9kitffD661m1uf7f1qO4vfssNtZz21sYhAYpVmSQqXbc3mIhPIGFxgVrSz2GGlH6tTtG7ck3e/MnFq9lZWbS33JWGTh7ObvHlcfPVWbv30Vje8MaBd2GralrWrX8V9qeoLFE7wQGGKOKINsRVLMeruSSTy1edjcdTrUqdCjFxhC71d23K123ZdktuhooSc%2Bebu0rL03/Fv8joa801CgDidW8K%2BIbvxv8A8JEmuaZLDboF06zu9PkkWzYjDyDbMoZ2zjcRkDgYyc%2B9h8zwlPBfVXTkm/ilGSTl2WsXZLtfV6voY1aTqTjK%2Bi2Xn39ei7fMLrwRdT31zF/a0I0e81GLUri1%2BzMZTMhViFk34CFkU42k9eeaIZzCEIv2b9pGLgnfSzutVbdJtb/IidBzUk38dr/Kydu10kFt4HnjvoYJNUifRbfU5NThtRbkSiVizbTJvwUDOxxtB6c0TzmLg5KH7xxUG76WVle1t7JLcqVJtuz0bTfys/zSYnhnwLPpVzosNxqyXOl6B5o0u2W3KOm5Si%2BY5c79qMyjAXrk5p43Oo4iNWUadp1bc7vdaO7srK12k3qw9j9lP3eZyt1u79eybf4djt68A3CgDj/G3hbV/EGt6ddRavZLptl%2B8/s66s3lilnBysj7ZU3bccKcgHnqBj28tzPD4OhODpvnlpzKSTUeqV4u1%2BrWttNrmNek6qUb6dV37X8lvbq99izrGi%2BJNQgkg/t%2BzSG7tPs93EbElQSCGeH94ChIPRi44HvnLD4zCUZKXsneLunzfcpaa28uUq1Rap6%2Bmnl/VzIufh4wS%2B03T9VS20XUltxfWzW5eVhCiR4jfeAm5I0Byp6HGK7YZ8rwq1IXqQ5uV3svebeqtrZttarzMVhuSPLTdvdUfkrr77Nr7iQ%2BAJDeva/2sv8AYL6wusGy8g%2BaJw4l2%2Bbvx5fmgPjbntnFT/bi5FPk/e8ns%2Ba%2BnLblva2/Lpe9uthzw6fOouyna/ySWna/Kr/O253VfPHSFAGfr1pqN3ZKmlan/Z90kqyLI0IlRwDyjrkEqRwcEH0NdOFq0qc71oc0Wmt7P1T7rzTXkTJc0Wk7f1/SfkcoPAl2l8%2Buxavbr4gk1EXzz/ZW%2BzH9yIdnleZnGwdd2c857V7H9tU3BYd037JR5bXXN8XNfmtvfytY53huabqSfve76e7e2nzd/wDgIfB4HvrBrDUNM1iCPWbeS6eaee1Z4ZvtLK0g8sOCAGRMfMcY70pZzTqqdKrTbptRSSaTXImlrZ9G76dS/Y3fM3rzc3lta33W%2B4rwfD260sRS%2BH9dW0un05rC9muLYy%2BcpkaTzFAdQrhpJCOo%2BbpxWks%2BhXusTS5oqXNFJ2tolZ6O6aSvs9NwjSlCUaqfvrmd%2Bj5mm9PJpW12uup2Xh/S7XQ9CsNGsQwtbG2jt4QxydiKFGT64FeHi8TPFV516nxSbb9W7lUaSo01BdC9XOalXVre4u9NuLa0vZLG4kQiO4jUM0bdjhuD9DW1CpCnUjKceZLdd/uBq6aOaTwtrL6hea1Pr0EetTW0VrFNa2ZSJI0cvhkZ2LbiSCcjjpjrXqPMsOqcaEaTdNNtpyu22raNJWt0033uc7oylNTk9Umlbzab79l/TKl94Fu768Ot3Gq2y%2BIEvILqC4itWWBDEjoFMZcsVKySA/P/ABcYxW1LOoUofV4wfsnGUWm1d8zTve1k00radAnQdTmcnq7Wt05XzL1138hsXgO%2BtruDW7TW4V8QLez3c9zJas0EomRY2j8oOCFCpHj5s5QZJyacs7pTg8POm/ZcsYpJ%2B8uVtp3tu23fTr0CdD2kvaTfvKSattpFxtbr7rfz18jo/BuhReHNBj0yOdrh/NluJ5mGPMllkaSRsdgWdsDsK8zMcbLG13Vatokl2UUkl9yRdKm4czbu5Nt%2Br/qxs1wmoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFACHoaAPE/D3i7W73wzpOoaf4zvdY8Q3F5GkmkNbW3lMhm2yA7IVdAqZbdv4xznpX0EsJSVXlnTShb4ru692997PXpbU58ROUY1eT4k5cq7tNpL/g/M3JfFfiGy8E67p8t4lx4ptdVbSrOV40G95mBt5CgAUgRuGPGDsauaOEpVa1KSVoSV35cvxfl%2BKKlV9k6ravy6pd%2Bb4V6c3u330ZeXxdqFhc6s8skmpi0vbbRbK2ASI3N2VUvK7BflBLjOOAFOFJ4qfqsKihyrl5uaXXSKvou%2Bz31ehClKnfnlfkir6auTt928bbLV30tavqXj7V47DXZ7rSjpVx4av7Zb2OOdbiO6hkA3FWKKQMPkHCnK%2BnBqlgKcp0uWXMql0tLNNbdX19Vb8HWqygqitrGKl6rVtfdFo9KryDoFoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAEPSgDK8IaJH4c8OWmiwzvOlspUSOMFssT0H1rbEVnWnztW2/BWElZt92397uZN/4HsLv4h2vjE3UySQwqstqBmKaRA4jlPoyiWQe%2BR6Ct6WNnTw8qFtHs%2B17X%2B%2By/pk1YKo4vt%2BK3S%2BTu/mc/4m8M6vFLr39n6Zc3iT6jbaxYS2s8Syx3C7VkXErKrEbA2CVVgzDcDiunD4mHLT5pWceaLunbld309Wn1WjSZnVp80pK2kkvKzi1%2BlmtGrpqVk1fOsvCHinVNJ14azDOk3iTVLY3CzGBHtrWJV3Flid152FQFdz8wJPXG7xeHpTpezelNN9dW9t0n26JfrnUpzq%2B1b05oqPy1TenlJ%2Beh65XhHWLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAA/9k='/%3E%0A%3Cpath d='M489.2 121.3h394v43.3h-394V121.3Z' class='g2'/%3E%0A%3Cpath d='M489.2 437.4H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g3'/%3E%0A%3Cpath d='M489.2 394.1H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g4'/%3E%0A%3Cpath d='M489.2 186.2H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g5'/%3E%0A%3Cpath d='M489.2 806.2h394v43.3h-394V806.2Z' class='g2'/%3E%0A%3Cpath d='M489.2 1120.8h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g3'/%3E%0A%3Cpath d='M554.1 982.2h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6m-394-86.6h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g5'/%3E%0A%3Cpath d='M489.2 1068.8h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g4'/%3E%0A%3C/svg%3E)
Estudio del peso vivo de aves de corral / Centurión et al.______________________________________________________________________ 
4 of 7 
Por tanto, la distribución que se adecuó mejor a la dinámica de 
comportamiento del PV de las aves es la Gaussiana inversa, con 
función de enlace log para modelar los dos parámetros de esta 
distribución seleccionada, la media (μ) y dispersión (σ) [23]. Esta 
distribución, también conocida como distribución de Wald, con 
soporte positivo en el intervalo (0, ∞), captura la asimetría positiva 
observable en datos de crecimiento. 
Como puede observarse (FIG. 2), el PV presentó un 
comportamiento asimétrico hacia la derecha, en congruencia con 
la característica de la distribución escogida. Esta asimetría no 
constituye meramente un inconveniente estadístico, sino un reflejo 
de la realidad biológica. De acuerdo con los señalamientos de Punzo 
[30], la distribución Gaussiana inversa es ampliamente conocida y 
considerada por estos aspectos peculiares (datos positivos sesgados 
a la derecha), en coincidencia con manifestaciones de Pasari [31], 
sobre las aplicaciones de esta distribución en diferentes campos 
del conocimiento. Aquí, el histograma representó la distribución 
observada del PV, mientras que la línea roja ilustró la distribución 
de probabilidad ajustada. 
Según los resultados expuestos en la TABLA II, en primera instancia 
(VIF1), se detectó el valor más alto para LC, motivo por el cual fue 
excluida. Seguidamente, fueron eliminadas AP y LQ, identificándose 
valores superiores para las mismas (VIF2). Finalmente, en la última 
fase todas las variables restantes presentaron niveles inferiores al 
umbral de referencia, quedando escogidas LCU, LM, AC, LDM, LD y edad. 
De acuerdo con Giacomet et al. [24], quienes al analizar el 
VIF, no eliminaron de manera automática todas las variables con 
VIF > 5, sino que la estrategia de exclusión fue secuencial hasta 
lograr seleccionar predictores acordes con el criterio adoptado, 
procedimiento seguido en este trabajo. 
En la TABLA III, se presenta el resultado del proceso de 
selección de las variables independientes en la cual se aprecian 
los efectos estimados para el modelo de regresión GAMLSS con 
distribución Gaussiana inversa para el PV, en la modelación de 
cada parámetro (μ y σ). 
El modelo GAMLSS permite que todos y cada uno de los 
parámetros de la distribución escogida, puedan ser modelados de 
manera explícita, en este caso, tanto la media (μ) como el parámetro 
de dispersión (σ) fueron modelados en función de las características 
morfométricas. Según Punzo [30], en el análisis de regresión, la 
eficiencia del modelo puede verse afectada de manera sustancial si 
son utilizados modelos de dispersión constantes cuando en realidad 
no lo son. Es por ello, importante la consideración de este tipo de 
modelo (GAMLSS), a fin de determinar una distribución acorde, y 
a partir de allí analizar la estructura de regresión, en donde cada 
parámetro pueda ser descrito en función de las variables explicativas. 
En la TABLA II se muestran los valores VIF obtenidos de manera 
secuencial, específicamente en tres etapas, como parte del 
proceso de selección de variables en el modelo GAMLSS. 
El VIF fue calculado de manera gradual de acuerdo al 
procedimiento de Giacomet et al. [24], teniendo como punto de 
corte VIF > 5. No obstante, en otros estudios adoptaron como criterio 
VIF>10 [1] o VIF <4 [25], este último más exigente. 
FIGURA 2. Histograma del Peso Vivo en gramos y la distribución Gaussiana 
inversa ajustada 
TABLA II 
Valores del factor de inflación de la varianza calculados de manera 
secuencial en el proceso de selección de variables independientes 
Variable independiente VIF1 VIF2 VIF3 
LCU (cm) 4,1741 2,5983 1,9082 
AP (cm) 21,1468 13,6949 – 
LQ (cm) 17,3735 13,1652 – 
LM (cm) 1,6854 1,6746 1,4206 
LC (cm) 149,9224 – – 
AC (cm) 4,5110 1,5316 1,4656 
LDM (cm) 5,8014 1,4447 1,4970 
LD (cm) 6,3906 3,7759 3,2415 
Edad (joven y adulto), 
11 y 31 sem, respectivamente 
28,3593 8,6451 4,4391 
LCU: Longitud de cuello; AP: ancho de pecho; LQ: Longitud de quilla; LM: longitud de 
muslo; LC: Longitud corporal; AC: ancho de cráneo; LDM: Longitud del dedo medio; LD: 
longitud del dorso; VIF: Valores del factor de inflación de la varianza en tres etapas (1, 2, 3) 
TABLA III 
Efectos estimados en el modelo GAMLSS con respuesta Gaussiana 
inversa para el peso vivo y función de enlace logarítmica 
Parámetro 
modelado 
Función 
Enlace 
Estimación EE Valor t Valor P 
μ Log 
Intercepto 6,1237 0,0051 1192,2100 0,0000 * 
Edad_31sem 0,2725 0,0082 32,97 0,0000 * 
LM 0,0768 0,0018 41,08 0,0000 * 
LCU 0,0214 0,0006 32,30 0,0000 * 
σ 
Log 
Intercepto -11,9406 1,4020 -8,5160 0,0000 * 
LCU -0,4804 0,0515 -9,320 0,0000 * 
AC 3,9140 0,1030 37,9690 0,0000 * 
LDM 0,71476 0,2778 2,5720 0,0162 * 
μ: media, σ: dispersión, log: logaritmo, LM: longitud de muslo, LCU: longitud del cuello, 
AC: ancho de cráneo, LDM: Longitud del dedo medio, Edad: variable categórica de dos 
niveles, joven con 11 sem y adulta con 31 sem, EE: error estándar, *: Efectos significativo 
al 5 % de probabilidad de error: