'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M301.8 149.8h135M293.6 208H413M160.3 282.6h119m-79.9 91.2H321.9M140.4 464.9H279.6M100.8 539.6H235M82.3 647.3H222.1M82.3 754.9H204.9m104.7 74.7H445.8M269.1 904.2H404.8m-112 74.7H434m-118.3 74.7H437.9M662.3 182.8H796.9M519.5 274H643.6m147.9 58.1H883M519.5 348.6h50.7m217.4 58.2H883M519.5 423.3h45.8M686.5 530.9H825.3M645.8 605.6H769.9M662.3 696.8H786.4M685.1 787.9H827.7m-89.5 91.2H858.8m-42.5 91.1H883M519.5 986.7h68.4m-68.4 91.2H651.2' class='g1'/%3E%0A%3C/svg%3E)
Hepatorenal toxicity in rats / Keskin Alkaç et al._________________________________________________________________________________________ 
10 of 11 
[18] Ellman GL. Tissue sulphydryl groups. Arch Biochem. Biophys. 
[Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8 
[19] Sun Y, Oberley LW, Li Y. A simple method for clinical assay of 
superoxide dismutase. Clin Chem. [Internet]. 1988; 34(3):497– 
500. PMID: 3349599. Available in: https://n9.cl/obr0f3 
[20] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein 
measurement with folin phenol reagent. J. Biol. Chem. 
[Internet]. 1951; 193(1):265–275. PMID: 14907713. 
Available in: https://n9.cl/nrvmy 
[21] Wang LL, Yu QL, Han L, Ma XL, Song RD, Zhao SN, Zhang WH. 
Study on the effect of reactive oxygen spesies–mediated 
oxidative stress on the activation of mitochondrial apoptosis 
and the tenderness of yak meat. Food Chem. [Internet]. 2018; 
244:394-402. doi: https://doi.org/pgpv 
[22] Wang LL, Han L, Ma XL. Yu QL, Zhao SN. Effect of mitochondrial 
apoptotic activation through the mitochondrial membrane 
permeability transition pore on yak meat tenderness during 
postmortem aging. Food Chem. [Internet]. 2017; 234:323- 
331. doi: https://doi.org/g7fw42 
[23] Hu ZG, Zhou L, Ding SZ. Effect of aerobic training to exhaustive 
exercise rat mitochondrial permeability transition pore. J. 
Shenyang Sport Univ. [Internet]. 2015; 34(3):64-67. Available 
in: https://goo.su/JVvutD 
[24] Steenkamp PA, Harding NM, Van–Heerden FR, van–Wyk 
BE. Determination of atractyloside in Callilepis laureola 
using solid–phase extraction and liquid chromatography– 
atmospheric pressure ionisation mass spectrometry. J. 
Chromatogr A. [Internet]. 2004; 1058(1-2):153-162. doi: 
https://doi.org/ddx7q2 
[25] Alkaç ZK, Korkak FA, Dağoğlu G, İncili CA, Hark BD, Tanyıldızı S. 
Puerarin mitigates oxidative injuries, opening of mitochondrial 
permeability transition pores and pathological damage 
associated with liver and kidney in Xanthium strumarium– 
intoxicated rats. Toxicon [Internet]. 2022; 213:13-22. doi: 
https://doi.org/pgpx 
[26] Koprdova R, Osacka J, Mach M, Kiss A. Acute Impact of 
Selected Pyridoindole Derivatives on Fos Expression in 
Different Structures of the Rat Brain. Cell Mol Neurobiol. 
[Internet]. 2018; 38(1):171-180. doi: https://doi.org/gcwvg6 
[27] Dou JP, Wu Q, Fu CH, Zhang DY, Yu J, Meng XW, Liang P. 
Amplified intracellular Ca 2+ for synergistic anti–tumor therapy 
of microwave ablation and chemotherapy. J. Nanobiotechnology 
[Internet]. 2019; 17:1-17. doi: https://doi.org/gp5dqc 
[28] Nolfi–Donegan D, Braganza A, Shiva S. Mitochondrial 
electron transport chain: Oxidative phosphorylation, oxidant 
production, and methods of measurement. Redox Biol. 
[Internet]. 2020; 37:101674. doi: https://doi.org/gmxqv7 
[29] Wang Y, Han T, Xue M, Han P, Zhang QY, Huang BK, Zhang H, 
Ming QL, Peng W, Qin LP. Hepatotoxicity of kaurene glycosides 
from Xanthium strumraium L. fruits in mice. Pharmazie. 
[Internet]. 2011; 66(6):445-449. doi: https://doi.org/pgpz 
[30] Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Xanthatin 
Promotes Apoptosis via Inhibiting Thioredoxin Reductase 
and Eliciting Oxidative Stress. Mol. Pharm. [Internet]. 2018; 
15(8):3285-3296. doi: https://doi.org/gdsvwj 
[31] Atlante A, Valenti D, Latina V, Amadoro G. Dysfunction of 
Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact 
with Toxic Proteins and Aid to Determine the Fate of Brain 
Cells. Int. J. Mol. Sci. [Internet]. 2022; 23(14):7722. doi: 
https://doi.org/pgp3 
[32] Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, 
energetics, and membrane interactions. J. Gen. Physiol. 
[Internet]. 2020; 152(11):e201912475. doi: https://doi.org/ 
g89s3m 
[33] Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. IF1: 
setting the pace of the F1F0-ATP synthase. Trends. Biochem. 
Sci. [Internet]. 2009; 34(7):343-350. doi: https://doi.org/ 
cpcpn3 
[34] Grover GJ, Atwal KS, Sleph PG, Wang FL, Monshizadegan H, 
Monticello T, Green DW. Excessive ATP hydrolysis in ischemic 
myocardium by mitochondrial F1F0-ATPase; effect of selective 
pharmacological inhibition of mitochondrial ATPase hydrolase 
activity. Am. J. Physiol. Heart. Circ. Physiol. [Internet]. 2004; 
287(4):H1747-H1755. doi: https://doi.org/d98427 
[35] Koc S, Aktas A, Sahin B, Ozer H, Zararsiz GE. Protective effect 
of ursodeoxycholic acid and resveratrol against tacrolimus 
induced hepatotoxicity. Biotech. Histochem. [Internet]. 2023; 
98(7):471-478. doi: https://doi.org/pgp4 
[36] Simental–Mendía M, Sánchez–García A, Simental–Mendía LE. 
Effect of ursodeoxycholic acid on liver markers: A systematic 
review and meta–analysis of randomized placebo–controlled 
clinical trials. Br. J. Clin. Pharmacol. [Internet]. 2020; 
86(8):1476-1488. doi: https://doi.org/pgp5 
[37] Rajagopala SV, Singh H, Yu Y, Zabokrtsky KB, Torralba MG, 
Moncera KJ, Pieper R, Sender L, Nelson KE. Persistent gut 
microbial dysbiosis in children with acute lymphoblastic 
leukemia (ALL) during chemotherapy. Microb. Ecol. [Internet]. 
2020; 79:1034-1043. doi: https://doi.org/gmwp4f 
[38] Qi H, Shen D, Jiang C, Wang H, Chang M. Ursodeoxycholic 
acid protects dopaminergic neurons from oxidative stress via 
regulating mitochondrial function, autophagy, and apoptosis 
in MPTP/MPP 
+ 
–induced Parkinson’s disease. Neurosci. Lett. 
[Internet]. 2021; 741:135493. doi: https://doi.org/pgpt 
[39] Ali FEM, Hassanein EHM, Bakr AG, El–Shoura EAM, El–Gamal 
DA, Mahmoud AR, Abd–Elhamid TH. Ursodeoxycholic acid 
abrogates gentamicin–induced hepatotoxicity in rats: Role 
of NF–KB–p65/TNF–a, Bax/Bcl–xl/Caspase-3, and eNOS/ 
iNOS pathways. Life Sci. 2020; 254:117760. doi: https://doi. 
org/gt5kh7 
[40] Xue LM, Zhang QY, Han P, Jiang YP, Yan RD, Wang Y, Rahman 
K, Jia M, Han T, Qin LP. Hepatotoxic constituents and 
toxicological mechanism of Xanthium strumarium L. fruits. 
J. Ethnopharmacol. [Internet]. 2014; 152(2):272-282. doi: 
https://doi.org/f5wjfd