
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34401
7 of 8
[12]  Ahmad MI, Kumar P, Singh S, Kumar N. Method development and 
characterization of liposomal formulation of ısotretinoin. Borneo 
J. Pharm. [Internet]. 2021; 4(2):117–127. doi: https://doi.org/m7xx
[13]  Wang FC, Acevedo  N,  Marangoni AG.  Encapsulation  of 
phytosterols and phytosterol esters in liposomes made with 
soy phospholipids by high pressure homogenization. Food Funct. 
[Internet]. 2017; 8(11):3964–3969. doi: https://doi.org/n6b8
[14]  Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted 
therapy: A review. Int. J. Mol. Sci. [Internet]. 2023; 24(3):2643. 
doi: https://doi.org/gsd5s5
[15] Hu CMJ, Zhang L. Nanoparticle–based combination therapy toward 
overcoming drug resistance in cancer. Biochem. Pharmacol. 
[Internet]. 2012; 83(8):1104–1111. doi: https://doi.org/fzws4c
[16]  Çoban Ö, Yıldırım S, Bakır T. Alpha–lipoic acid and Cyanocobalamin 
Co–Loaded Nanoemulsions: Development, Characterization, 
and Evaluation of Stability. J. Pharm. Innov. [Internet]. 2021; 
17(2):510–520. doi: https://doi.org/m7xz
[17]  Çoban Ö, Barut B, Yalçın CÖ, Özel A, Bıyıklıoğlu Z. Development 
and in vitro evaluation of BSA–coated liposomes containing Zn (II) 
phthalocyanine–containing ferrocene groups for photodynamic 
therapy of lung cancer. J. Organomet. Chem. [Internet]. 2020; 
925:121469. doi: https://doi.org/m7x2
[18]  Akbarzadeh A, Rezaei–Sadabady R, Davaran S, Joo SW, Zarghami 
N, Hanifehpour Y, Samiei M, Kouhi M, Nejati–Koshki K. Liposome: 
classication, preparation, and applications. Nanoscale Res. 
Lett. [Internet]. 2013; 8(1):102. doi: https://doi.org/f4qfjh
[19]  Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal 
drug delivery. Chem. Rev. [Internet]. 2015; 115(19):10938–10966. 
doi: https://doi.org/ggzm94
[20] Liu R, Xie Y, Xu JR, Luo Q, Ren YX, Chen M, Duan JL, Bao CJ, 
Liu YX, Li PS, Li JW, Wang GL, Lu WL. Engineered stem cell 
biomimetic liposomes carrying levamisole for macrophage 
immunity reconstruction in leukemia therapy. Chem. Eng. J 
[Internet]. 2022; 447:137582. doi: https://doi.org/m7x3
[21]  Fülöp V, Jakab G, Bozó T, Tóth B, Endrésik D, Balogh E, 
Kellermayer M, Antal I. Study on the dissolution improvement 
of albendazole using reconstitutable dry nanosuspension 
formulation. Eur. J. Pharm. Sci. [Internet]. 2018; 123:70–78. 
doi: https://doi.org/gd7jcw
[22] Zhang H, Zhao J, Chen B, Ma Y, Li Z, Shou X, Wen L, Yuan Y, Gao H, 
Ruan J, Li H, Lu S, Gong Y, Wang J, Wen H. Pharmacokinetics and 
tissue distribution study of liposomal albendazole in naturally 
Echinococcus granulosus infected sheep by a validated UPLC–Q–
TOF–MS method. J. Chromatogr. B [Internet]. 2020; 1141:122016. 
doi: https://doi.org/m7zh
[23]  Torrens F, Castellano G, Campos A, Abad C. Negatively cooperative 
binding of melittin to neutral phospholipid vesicles. J. Mol. Struct. 
[Internet]. 2007; 834–836:216–228. doi: https://doi.org/dwwr5j
[24] Matos  C,  de  Castro  B,  Gameiro  P,  Lima  JLFC, Reis  S. 
Zeta–potential measurements as a tool to quantify the 
effect of charged drugs on the surface potential of egg 
phosphatidylcholine liposomes. Langmuir. [Internet]. 2004; 
20(2):369–377. doi: https://doi.org/fjfd8b
[25]  Soema PC, Willems GJ, Jiskoot W, Amor JP, Kersten GF. Predicting 
the inuence of liposomal lipid composition on liposome size, 
zeta potential and liposome–induced dendritic cell maturation 
using a design of experiments approach. Eur. J. Pharm. Biopharm. 
[Internet]. 2015; 94:427–435. doi: https://doi.org/f7ng3w
[26]  Kotyńska J, Naumowicz M. Theoretical considerations and the 
microelectrophoresis experiment on the inuence of selected 
chaotropic anions on phosphatidylcholine membrane surface 
charge density. Molecules. [Internet]. 2020; 25(1):132 doi: 
https://doi.org/gmtg3z
[27]  Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a 
case study of cationic, anionic, and neutral liposomes. Anal. 
Bioanal. Chem. [Internet]. 2017; 409(24):5779–5787. doi: https://
doi.org/gbwdrr
[28]  Kotyńska J, Figaszewski Z. Adsorption equilibria between 
liposome membrane formed of phosphatidylcholine and aqueous 
sodium chloride solution as a function of pH. Biochim Biophys 
Acta. [Internet]. 2005; 1720(1–2):22–27. doi: https://doi.org/dztbhv
[29]  Brgles M, Jurasin D, Sikirić MD, Frkanec R, Tomasić J. Entrapment 
of ovalbumin into liposomes—factors affecting entrapment 
eciency, liposome size, and zeta potential. J. Liposome Res. 
[Internet]. 2008; 18(3):235–248. doi: https://doi.org/cf93gd
[30]  Matsumura H, Watanabe K, Furusawa K. Flocculation behavior of 
egg phosphatidylcholine liposomes caused by Ca2+ ions. Colloids 
Surf. [Internet]. 1995; 98(1–2):175–184. doi: https://doi.org/fhpf2c
[31]  Wang X, Swing CJ, Feng T, Xia S, Yu J, Zhang X. Effects of 
environmental pH and ionic strength on the physical stability 
of cinnamaldehyde–loaded liposomes. J. Dispers. Sci. Technol. 
[Internet]. 2020; 41(10):1568–1575. doi: https://doi.org/m7x5
[32]  Sai VL. Extraction of cinnamaldehyde from cinnamomum 
zeylanicum. Int. Res. J. Mod. Eng. Technol. Sci. [Internet] 2020 
[cited 12 Jan 2024]; 2(7):185–187. Available in: https://goo.su/rT6BT
[33]  Zhili L, Rao F, Song S, Uribe–Salas A, López–Valdivieso A. Effects 
of common ions on adsorption and otation of malachite with 
salicylaldoxime. Colloids Surf. A [Internet]. 2019; 577:421–428. 
doi: https://doi.org/m7zp
[34]  Arin DR, Palmer AF. Determination of size distribution and 
encapsulation eciency of liposome–encapsulated hemoglobin 
blood substitutes using asymmetric ow eld–ow fractionation 
coupled with multi–angle static light scattering. Biotechnol. Prog. 
[Internet]. 2003; 19(6):1798–1811. doi: https://doi.org/ftxppn
[35]  Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg 
T, Bunker A. Cholesterol level affects surface charge of lipid 
membranes in saline solution. Sci. Rep. [Internet]. 2014; 4:5005. 
doi: https://doi.org/gprscj
[36]  Katragadda AK, Singh M, Betageri GV. Encapsulation, Stability, 
and In Vitro Release Characteristics of Liposomal Formulations 
of Stavudine (D4T). Drug Deliv. [Internet]. 1999; 6(1):31–37. doi: 
https://doi.org/b9v2pn
[37]  Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, Gan Y. Comparative study 
of Pluronic® F127–modied liposomes and chitosan–modied 
liposomes for mucus penetration and oral absorption of 
Cyclosporine A in rats. Int. J. Pharm. [Internet]. 2013; 449(1–2):1–9. 
doi: https://doi.org/f4vzn5